本生灯下气体燃料层流火焰传播速度的精确测量方法

    公开(公告)号:CN102253234B

    公开(公告)日:2013-01-02

    申请号:CN201110148721.3

    申请日:2011-06-03

    Abstract: 本生灯下气体燃料层流火焰传播速度的精确测量方法,涉及一种层流火焰传播速度的精确测量方法。它提高了现有的本生灯法锥形法计算模型计算精度。它将采用二维粒子成像速度仪获得管口上方火焰区域的流场图像,对图像进行处理后得到垂直管口轴向截面内流场速度图;同时采用CCD成像仪对本生灯火焰进行图像采集,对图像进行亮度分析、边缘提取后进行曲线拟合,获得拟合后的火焰锋面;将流场速度图与锋面曲线进行位置匹配,采用插值法计算得出锋面曲线上线性度好的区段上各点的气流速度Un;再根据余弦定律计算各点的火焰传播速度,求取平均值,得到本生灯的局部层流火焰传播速度。本发明适用于气体燃料燃烧过程中本生灯层流火焰传播速度的精确测量。

    一种同时测量多种组分信息的平面激光诱导荧光成像测量方法

    公开(公告)号:CN102706851A

    公开(公告)日:2012-10-03

    申请号:CN201210218374.1

    申请日:2012-06-28

    Abstract: 一种同时测量多种组分信息的平面激光诱导荧光成像测量方法。它涉及能源动力及光电子学领域,它解决了现有方法只能测量一种组分,而不能完全反应流场和燃烧过程的缺陷。其步骤:将由n台激光器产生的激光进行合束变成一束激光,然后通过片状光束整形系统进行光束整形,用整形后的片状激光激发目标火焰中指定目标区域的组分信息,产生n个不同波长的荧光;依次通过聚焦透镜和光栅将n个不同波长的荧光从空间上分开,分别成像于面阵ICCD接收面的n个不同区域,收到的n个图像传输到计算机进行处理分析后会同时获得n种组分的空间分布信息。本发明可广泛应用于各种流场和燃烧过程的诊断,为燃烧学、流体力学以及燃烧技术的研究提供基础数据。

    本生灯下气体燃料层流火焰传播速度的精确测量方法

    公开(公告)号:CN102253234A

    公开(公告)日:2011-11-23

    申请号:CN201110148721.3

    申请日:2011-06-03

    Abstract: 本生灯下气体燃料层流火焰传播速度的精确测量方法,涉及一种层流火焰传播速度的精确测量方法。它提高了现有的本生灯法锥形法计算模型计算精度。它将采用二维粒子成像速度仪获得管口上方火焰区域的流场图像,对图像进行处理后得到垂直管口轴向截面内流场速度图;同时采用CCD成像仪对本生灯火焰进行图像采集,对图像进行亮度分析、边缘提取后进行曲线拟合,获得拟合后的火焰锋面;将流场速度图与锋面曲线进行位置匹配,采用插值法计算得出锋面曲线上线性度好的区段上各点的气流速度Un;再根据余弦定律计算各点的火焰传播速度,求取平均值,得到本生灯的局部层流火焰传播速度。本发明适用于气体燃料燃烧过程中本生灯层流火焰传播速度的精确测量。

    微波硫灯灯泡的制备方法
    34.
    发明授权

    公开(公告)号:CN100561635C

    公开(公告)日:2009-11-18

    申请号:CN200710144906.0

    申请日:2007-12-24

    Abstract: 微波硫灯灯泡的制备方法,它涉及硫灯灯泡的制备方法。它解决了现有制备工艺不能保证灯泡内具有高真空度,而充入硫粉纯度及硫和Ar气的充入量不易控制,使制得的硫灯的发光亮度及效率、显色性和使用寿命都较低的问题。本发明的制备方法为:一、制备装置;二、加热抽真空,使装置内真空度维持在2~8×10-4Pa;三、将玻璃容器上方的凸出的玻璃尖砸裂;四、采用马弗炉将玻璃容器中的硫粉加温,使玻璃容器内的硫粉蒸发至石英灯泡内;五、待硫粉完全蒸发后冷却至室温,再将灯泡内抽真空并充入Ar气,即制得微波硫灯灯泡。本发明制得的灯泡其发光光谱接近于太阳光谱,显色指数达到82,由于灯泡内的高真空度和高纯度的硫显著地提高了灯泡的使用寿命。

    非谐振腔型光参量振荡器
    35.
    发明公开

    公开(公告)号:CN1361565A

    公开(公告)日:2002-07-31

    申请号:CN00137706.X

    申请日:2000-12-25

    Abstract: 本发明提出一种非谐振腔型光参量振荡器,该振荡器由分光镜、输入镜、晶体和转台组成,其中在分光镜的后面装有输入镜,在输入镜后面按顺序装有两个晶体及一个输出镜,晶体放在转台上。本发明前后向分别输出单一波长的可调谐激光,两个腔镜位置互换则输出波长互换,调谐范围大,具有极大地应用前景。

    基于多源光谱信息融合的发动机燃烧状态预测系统及方法

    公开(公告)号:CN118347952A

    公开(公告)日:2024-07-16

    申请号:CN202410514663.9

    申请日:2024-04-26

    Abstract: 基于多源光谱信息融合的发动机燃烧状态预测系统及方法,涉及面向能源与动力装置感知技术领域。时序控制模块保证时序上的同步,火焰自发辐射强度感知模块和多源信息探测模块对发动机的燃烧室的同一火焰区域进行探测,状态预测模型的训练集利用辐射强度感知数据对图像特征和光谱信息进行数据集的划分得到,包括对应发动机稳定燃烧、过渡状态和熄火状态这三种状态的三个集合,状态预测模型以光谱信息作为输入并实时向发动机输出预测的燃烧状态。充分利用多源信息探测获得的图像特征和光谱信息,通过状态预测模型对发动机燃烧状态进行实时预测,为发动机运行状态控制提供参考,具有更高的准确性。

    一种基于分层算法的3D-PIV测量装置及测量方法

    公开(公告)号:CN118243953A

    公开(公告)日:2024-06-25

    申请号:CN202410274055.5

    申请日:2024-03-11

    Abstract: 一种基于分层算法的3D‑PIV测量装置及测量方法,涉及流场测量技术领域。激光器输出激光,扩束镜和准直镜将激光整形为片光,两个反射镜中间位置为测量区域,片光射入两个反射镜之间并多次反射形成多道能量逐次下降的片光,两个聚焦镜布置在两个反射镜之间并位于测量区域两侧,使片光聚焦在测量区域中心位置,高速相机与测量区域对应布置捕捉示踪粒子的散射图像。利用两个反射镜形成空间多截面、多级能量的片光分布,仅采用单个高速相机采集示踪粒子散射信号,有助于控制成本,标定简洁,适应性高。

    一种实现发动机燃烧室SLIPI-3DLIF测量的装置与方法

    公开(公告)号:CN114166515B

    公开(公告)日:2023-03-10

    申请号:CN202111463904.4

    申请日:2021-12-02

    Abstract: 本发明公开了一种实现发动机燃烧室SLIPI‑3DLIF测量的装置与方法,所述装置包括激光系统、整形调制系统、多分束传能光纤、传像光纤、相机,激光系统根据燃烧场待测物质确定输出照明光的波长;整形调制系统包括片光整形部分和结构光调制部分,片光整形部分对激光系统输出的激光束进行整形后经结构光调制部分调制为空间强度余弦分布的结构片光;多分束传能光纤采用1分N的模式,将结构片光分成N束子片光并传输至发动机燃烧室内部;所述传像光纤嵌入发动机燃烧室侧壁,将N束子片光纵向重叠照明区域的荧光图像传输至相机以成像。通过这种手段,可以解决由于发动机燃烧室极端环境限制导致无法实现三维LIF测量的问题。

    改进石英增强光声光谱痕量气体检测性能的装置及方法

    公开(公告)号:CN113984675A

    公开(公告)日:2022-01-28

    申请号:CN202111334508.1

    申请日:2021-11-11

    Abstract: 本发明公开了一种改进石英增强光声光谱痕量气体检测性能的装置及方法,所述装置包括第一可调谐半导体激光器、第二可调谐半导体激光器、光合束器、激光光束准直单元、光束聚焦透镜、气室、石英音叉、光功率计、信号发生器、锁相放大器、加法器、激光器控制单元、计算机、加湿管。本发明使用一束激光激发处于基态的快弛豫分子,使其跃迁到激发态。由于处于激发态的快弛豫分子性质相比基态分子更加活泼,因此,与待测的慢弛豫气体分子碰撞概率将会显著增加,此时二者碰撞可促使激发态的待测气体分子快速跃迁到基态,从而增加待测气体分子的弛豫速率、声波产生强度以及传感系统的信号幅值。

    一种痕量气体浓度检测方法

    公开(公告)号:CN108489905B

    公开(公告)日:2021-02-12

    申请号:CN201810201406.4

    申请日:2018-03-12

    Inventor: 马欲飞 何应 于欣

    Abstract: 本发明实施例涉及一种痕量气体检测的方法,包括沿光束传播方向依次设置的半导体激光器(1)、激光准直聚焦系统(2)、石英谐振器(3)、阻抗放大器(4)、控制与数据采集系统(5)、计算机(6)。半导体激光器(1)输出激光经激光准直聚焦系统(2)聚焦后沿石英谐振器(3)的宽度面传输,气体分子吸收激光后产生的声波直接作用到石英谐振器(3)的宽度面上。石英谐振器(3)受到声波激励后产生的压电信号传输至阻抗放大器(4)并由控制与数据采集系统(5)与计算机(6)进行信号解调与后处理。本方法能够快速检测出大气环境中存在多种痕量气体。

Patent Agency Ranking