-
公开(公告)号:CN113085181B
公开(公告)日:2022-03-08
申请号:CN202110370543.2
申请日:2021-04-07
Applicant: 吉林大学
IPC: B29C64/20 , B29C64/393 , B29C64/386 , B29C64/314 , B29C64/336 , B33Y30/00 , B33Y50/00 , B33Y50/02 , B33Y40/00 , B33Y40/10
Abstract: 本发明涉及多孔材料增材制造技术领域,特别涉及一种仿生阶层通孔材料的3D打印系统与方法,用于制备高比表面积和快传输速率兼具的多孔材料样件。基于挤出式3D打印工艺借助机械设计及冷冻结晶相结合的方法,可实现3D打印样件内挤出单道长丝内阶层通孔结构的贯穿分布,其独特的孔隙结构使得相关材料样件在催化剂载体、生物细胞和组织支架、吸附剂、药物载体等领域具有广泛的应用潜力。
-
公开(公告)号:CN113103576B
公开(公告)日:2022-01-28
申请号:CN202110370547.0
申请日:2021-04-07
Applicant: 吉林大学
IPC: B29C64/188 , B29C64/379 , B33Y30/00 , B33Y70/10 , B33Y40/20 , B29C64/40 , B33Y80/00
Abstract: 本发明涉及增材制造技术领域,特别涉及一种面向有序梯度多孔材料的3D打印系统及方法,用于解决传统3D打印无法实现挤出单道内各向异性梯度多孔材料的打印问题。具体该系统部分包括:三维成型运动模块、数字化超声辅助制造系统、可控气压输料模块及计算机控制系统。方法部分包括:内含牺牲模板颗粒打印材料的制备、超声辅助增材制造及后处理。可实现3D打印中单根挤出长丝内定向孔隙结构由内到外的梯度分布,其独特的力学特性及物理特性在组织工程、机械领域具有重大应用潜力。
-
公开(公告)号:CN113561484A
公开(公告)日:2021-10-29
申请号:CN202110936416.4
申请日:2021-08-16
Applicant: 吉林大学
IPC: B29C64/209 , B29C64/336 , B29C64/393 , B29C64/106 , B22F12/53 , B22F12/55 , B28B1/00 , B33Y40/00 , B33Y30/00 , B33Y50/02 , B33Y10/00 , B33Y70/00 , B33Y70/10
Abstract: 本发明公开了一种基于直写式多材料复合3D打印系统及方法,包括:3D打印模块,用于制造多材料复合产品;材料供应系统,用于不同材料不同比例实时供应;气泵系统,用于材料供应过程中的动力提供;计算机控制系统,通过控制软件控制各个系统有序配合工作,实现多材料复合打印产品按既定工艺完成。本发明可实现直写式打印中单一通道内任意几何截面多材料复合式打印成型。此外,本发明提出的可控变径旋转成型轴,可根据预先设计动态调控各段成型轴的直径,从而实现无支撑对称结构的高效立体成型,在生物医疗及工程领域具有重大应用潜力。
-
公开(公告)号:CN113103576A
公开(公告)日:2021-07-13
申请号:CN202110370547.0
申请日:2021-04-07
Applicant: 吉林大学
IPC: B29C64/188 , B29C64/379 , B33Y30/00 , B33Y70/10 , B33Y40/20 , B29C64/40 , B33Y80/00
Abstract: 本发明涉及增材制造技术领域,特别涉及一种面向有序梯度多孔材料的3D打印系统及方法,用于解决传统3D打印无法实现挤出单道内各向异性梯度多孔材料的打印问题。具体该系统部分包括:三维成型运动模块、数字化超声辅助制造系统、可控气压输料模块及计算机控制系统。方法部分包括:内含牺牲模板颗粒打印材料的制备、超声辅助增材制造及后处理。可实现3D打印中单根挤出长丝内定向孔隙结构由内到外的梯度分布,其独特的力学特性及物理特性在组织工程、机械领域具有重大应用潜力。
-
公开(公告)号:CN105772720B
公开(公告)日:2018-02-06
申请号:CN201610064298.1
申请日:2016-01-29
Applicant: 吉林大学
CPC classification number: Y02P10/295
Abstract: 本发明公开了一种粉末材料的梯度3D铺设方法及所用的铺设装置,铺设装置是由多材料供应装置、惰性气体瓶、供粉室、工作室、控制器和运动装置组成,多材料供应装置固定设置在惰性气体瓶与工作室之间,工作室和运动装置分别固定在供粉室内,控制器设置在供粉室外;本发明方法利用不同大小及密度的颗粒在重力、空气浮力及阻力的共同作用下沉降速度的不同的原理,在供粉缸内形成呈梯度变化的材料沉积,然后在将粉末在成型平台上铺平,激光束装置进行选择性固化,在进行烧结,层层叠加完成三维实体成型,通过粉末材料供应装置实现多种粉末材料的梯度铺设,进行多组分梯度粉末材料的3D打印,本发明工艺简单,节省材料,提高了3D打印技术。
-
公开(公告)号:CN107571491A
公开(公告)日:2018-01-12
申请号:CN201710995134.5
申请日:2017-10-23
Applicant: 吉林大学
IPC: B29C64/106 , B29C64/20 , B33Y10/00 , B33Y30/00 , B33Y80/00
Abstract: 本发明公开了一种挤出式螺旋编织结构的3D打印方法,包括:预先设置一包括料筒、挤出头和驱动装置的挤出式3D螺旋编织结构打印装置,设置所述挤出头可转动地连接于所述料筒;设置所述料筒包含二个以上的输料通道;所述驱动装置可驱动挤出头相对料筒转动;当进行3D打印时,向料筒的各个输料通道中输送不同的材料,并控制挤出头旋转,调节不同材料的输料比例、挤出头的旋转速度和旋转方向三个参数中的一个或二个以上,打印出不同的3D螺旋编织结构制品。本方法打印的制品力学性能相比普通3D打印大大提高,能满足高性能仿生结构材料领域的使用要求,并且本发明的打印方法调节灵活,可根据用户需求设计出丰富的螺旋纹理外观效果。
-
公开(公告)号:CN105499570B
公开(公告)日:2017-08-22
申请号:CN201510990255.1
申请日:2015-12-25
Applicant: 吉林大学
IPC: B22F3/105
Abstract: 本发明公开了一种在交变磁场中金属陶瓷功能梯度零件的3D打印方法,在交变磁场中具有优良导电性的金属材料因磁场的连续变化而在材料内部产生感应电流,基于导电性良好的金属材料与不易导电的陶瓷对交变磁场的不同响应,在打印过程中通过交变磁场控制金属材料定向分布,通过改变交变电流强度和电流频率改变驱动力大小,制备金属陶瓷功能梯度零件,实现了交变磁场3D打印金属陶瓷梯度零件,可在任意空间位置实现材料梯度分布,节省材料和设备成本,适合广泛推广应用。
-
公开(公告)号:CN106926455A
公开(公告)日:2017-07-07
申请号:CN201710312476.2
申请日:2017-05-05
Applicant: 吉林大学
IPC: B29C64/165 , B29C64/30 , B29C64/321 , B29C64/386 , B33Y30/00 , B33Y40/00 , B33Y50/00
Abstract: 本发明公开了一种层级多孔材料的3D打印方法及装置。专利基于巴西果效应,即把多种尺寸的颗粒混合物置于容器中,施加外加震荡,体积较大的颗粒会上浮,较小的颗粒会下沉,形成高度方向的梯度分布。基于此效应,本发明在粉末床3D打印工艺中增加了振荡装置。铺料之前,通过震荡使造孔颗粒按照体积大小有序分层;每铺完一层造孔颗粒,再于其上铺设一层液态光敏树脂材料;运用数字掩模技术选择性光固化;层层堆叠,固化成型;通过加热或溶解等后处理工艺去除造孔颗粒,形成分层多孔材料。通过此种方法得到的多孔材料,孔径尺寸沿着层厚方向有序变化,可产生梯度力学和声学性能,用于人造生物组织支架、吸声材料及减震缓冲材料等领域。
-
公开(公告)号:CN105207522B
公开(公告)日:2017-06-30
申请号:CN201510647935.3
申请日:2015-10-09
Applicant: 吉林大学
IPC: H02N2/18
Abstract: 本发明公开了一种湿度感应发电装置,包括有两个弧形压电元件,两个弧形压电元件间隔对称放置,两个弧形压电元件的上端之间、两个弧形压电元件的下端之间均由绝缘材料制成的矩形塑料板相连接;由若干个湿度感应致动器组成的致动器阵列粘接在矩形塑料板的内侧之间;弧形压电元件的内外表面覆设有金属电极层,弧形压电元件内外表面的金属电极层连接有输出导线;本发明借助湿度的变化,将机械能转化为电能,是一种清洁能源的发电装置,有利于环保,不使用燃料,发电成本低。
-
公开(公告)号:CN106891524A
公开(公告)日:2017-06-27
申请号:CN201710264424.2
申请日:2017-04-21
Applicant: 吉林大学
IPC: B29C64/129 , B29C64/20 , B33Y10/00 , B33Y30/00
Abstract: 本专利公开了一种3D打印工艺中定向组装短纤维的方法及装置。该方法是基于粉末床3D打印工艺,在液体成型材料中加入短纤维,同时改变铺料方式,在铺料时刮刀速度的大小及方向可以按照设计改变。铺料时液体基质中的纤维受到刮刀的剪切作用,纤维的长度方向会趋向于刮刀的运动方向,即实现纤维的长程有序。因此,通过设计刮刀的运动路径,即可以实现纤维的定向排列组装。采用本方法打印的材料,由于材料中的纤维方向是定向的,会产生不同于纤维随机分布材料的性质。这种可设计的各向异性材料,是一种仿生先进材料,在生物医学、机器人、传感器及机电一体化器件等领域存在广泛的应用潜力。
-
-
-
-
-
-
-
-
-