-
公开(公告)号:CN111126501B
公开(公告)日:2022-09-16
申请号:CN201911365650.5
申请日:2019-12-26
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06K9/62 , G06V10/762 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种图像识别方法、终端设备及存储介质,该方法包括以下步骤:S1:采集图像并对其进行标记后组成训练集;S2:通过训练集对神经网络模型进行训练,并对训练后的神经网络模型进行剪枝,剪枝过程如下:S21:输入每层卷积层的所有卷积核,设定卷积层的最大簇间距,层数i=N,N表示卷积层的总层数;S22:判断i
-
公开(公告)号:CN113807337B
公开(公告)日:2022-09-06
申请号:CN202110940583.6
申请日:2021-08-17
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06V30/16 , G06V30/148 , G06V30/19
Abstract: 本发明涉及一种基于图连通的文本检测方法、终端设备及存储介质,该方法中包括:S1:采集具有单字符文本标注的图像组成训练集;S2:构建文字检测模型,通过训练集对模型进行训练;S3:将待处理图像输入训练后的文字检测模型中,剔除置信度较低的预测文本框后,将其他预测文本框组成集合B;S4:计算集合B中每两个预测文本框之间的第一参数GIoU和第二参数DHIoU;S5:将集合B中所有的预测文本框作为图节点构建无向图,若两节点之间满足GIoU小于第一阈值且DHIoU小于第二阈值,则设定两节点之间连通,否则不连通;S6:计算无向图的连通分量,并计算每个连通分量所包含节点的最小外接矩形,将最小外接矩形作为文本框。本发明能够快速的准确进行文本区域定位。
-
公开(公告)号:CN112419249B
公开(公告)日:2022-09-06
申请号:CN202011263797.6
申请日:2020-11-12
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本发明涉及一种特殊服饰图片转化方法、终端设备及存储介质,该方法中包括:采集包含特殊服饰的图片组成训练集;对训练集中图片进行实例分割、高斯平滑处理、哈达玛积运算和颜色变化后,将颜色变换后的图片与原始图片进行图像叠加操作;将所有叠加后的图片作为自编码网络的输入,对自编码网络进行训练,使得自编码网络输出的图片训练集中对应的原始图片的差异最小;通过训练后的自编码网络对待识别特殊服饰的图片进行转化后,再进行特殊服饰的识别。本发明通过训练自编码网络来避免图片的光照、对比度或色调等颜色变换对图片内特殊服饰的识别的影响,提升特殊服装识别的整体识别率。
-
公开(公告)号:CN111985483B
公开(公告)日:2022-08-26
申请号:CN202010761222.0
申请日:2020-07-31
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本发明提出了一种拍屏文件图片检测方法、装置及存储介质,该方法包括:拍照设备中获取待检测的图片;使用第一卷积神经网络模型对所述待检测的图片进行检测,如果该图片为拍屏图片,则使用第二卷积神经网络检测该图片中是否包含文字,如果是,则进行文字识别;使用第三卷积神经网络模型对包含文字的拍屏图片进行文字识别,得到文本文件;使用所述文本文件与计算机系统中存储的文件进行匹配,如果匹配度大于第一阈值,则发出警报。本发明考虑到硬件的限制,设计了速度较快且准确率较好的图片分类模型,改进基于卷积神经网络的文字检测和文本识别算法,提升了文字检测和文本识别的速度,解决了拍屏文件图片检测和文本识别问题,可应用于低端手持设备,提升了用户体验。
-
公开(公告)号:CN112418405B
公开(公告)日:2022-08-19
申请号:CN202011412659.X
申请日:2020-12-03
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本申请实施例公开了模型压缩方法和装置。该方法的一具体实施方式包括:对于预设的样本图像集合中的每个样本图像,将该样本图像输入预设的基础图像识别模型,得到至少一个目标层分别对应的通道集合;基于通道集合,确定每个目标层分别对应的初始通道重要度向量;基于初始通道重要度向量,确定每个目标层分别对应的通道重要度向量;对于至少一个目标层中的每个目标层,基于该目标层对应的通道重要度向量,从该目标层中确定非重要通道并删除;将删除非重要通道后的模型作为子模型并对子模型进行训练。该实施方式实现了在不影响图像识别精度的情况下,对模型的体积进行有效的压缩,从而有助于节约模型占用的存储空间,并提高模型处理数据的效率。
-
公开(公告)号:CN114882593A
公开(公告)日:2022-08-09
申请号:CN202210551600.1
申请日:2022-05-18
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本发明给出了一种鲁棒的时空混合步态特征学习方法和系统,包括对于输入的一组步态帧序列,将每一帧的人体分割为易受着装变化影响的部分和不易受着装变化影响的部分,不易受着装变化影响的部分包括头部和小腿部分;对不易受着装变化影响的部分,通过三个不同子网络分别提取步态特征,将提取到的三个步态特征级联,作为最终进行步态识别的步态特征,三个不同子网络包括局部空间特征提取网络、全局空间特征提取网络和连续短时间间隔内的步态动态特征提取网络。每个子网络都刻画了步态特征的不同方面,串联混合可以合成一个更为鲁棒的步态特征,该方法和系统在处理行人着装变化这一步态识别问题时具有显著的增益效果。
-
公开(公告)号:CN114764451A
公开(公告)日:2022-07-19
申请号:CN202210551524.4
申请日:2022-05-18
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06F16/583 , G06F16/58 , G06K9/62 , G06N3/04 , G06N3/08 , G06V10/764 , G06V10/82
Abstract: 本发明给出了一种消除模态差异的跨模态检索方法和系统,包括将RGB图像和IR图像随机打乱,选取训练批作为输入;引入中间模态数据,利用中间模态数据结合动态稀疏规范化伪标签策略以增强模型泛化性。本发明提出了一种渐进式的消除模态差异的跨模态目标检索算法,将模型的关注点集中于图像本身,而不是图像对之间的ID关联。紧接着引入中间模态的数据,进一步防止IR图像信息在训练过程中被忽略,中间模态数据集由非条件生成对抗网络生成,并采用动态稀疏规范化伪标签策略来为中间模态数据集生成标签,可用于跨模态人脸检索和行人检索,该方法和系统在跨模态目标检索上有显著的性能提升。
-
公开(公告)号:CN113807337A
公开(公告)日:2021-12-17
申请号:CN202110940583.6
申请日:2021-08-17
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本发明涉及一种基于图连通的文本检测方法、终端设备及存储介质,该方法中包括:S1:采集具有单字符文本标注的图像组成训练集;S2:构建文字检测模型,通过训练集对模型进行训练;S3:将待处理图像输入训练后的文字检测模型中,剔除置信度较低的预测文本框后,将其他预测文本框组成集合B;S4:计算集合B中每两个预测文本框之间的第一参数GIoU和第二参数DHIoU;S5:将集合B中所有的预测文本框作为图节点构建无向图,若两节点之间满足GIoU小于第一阈值且DHIoU小于第二阈值,则设定两节点之间连通,否则不连通;S6:计算无向图的连通分量,并计算每个连通分量所包含节点的最小外接矩形,将最小外接矩形作为文本框。本发明能够快速的准确进行文本区域定位。
-
公开(公告)号:CN113591936A
公开(公告)日:2021-11-02
申请号:CN202110779118.9
申请日:2021-07-09
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本发明涉及一种车辆姿态估计方法、终端设备及存储介质,该方法中包括:S1:采集包含车辆的图像,并对图像中车辆对应的姿态和车辆目标的边界框进行标注,将标注后的图像组成训练集;S2:构建基于YOLOv2网络的车辆姿态估计模型,通过训练集对车辆姿态估计模型进行训练;S3:通过训练后的车辆姿态估计模型对车辆姿态和车辆目标进行估计。本发明可以和智能交通系统的检测任务融合为一个主干网络,具有较好的泛化性,不需要额外设计负责车辆姿态估计的网络结构,只需要修改检测器的输入和输出就能实现这种车辆姿态估计,在现实场景中具有较强的应用,且减少了硬件设施的消耗。
-
公开(公告)号:CN113327265A
公开(公告)日:2021-08-31
申请号:CN202110649574.1
申请日:2021-06-10
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本发明给出了一种基于指导学习策略的光流估计方法和系统,包括将图像分别送入教师网络和学生网络进行特征提取获取对应的特征图;计算学生网络和教师网络所获取的特征图的欧式距离,并使其最小化;利用损失函数最小化学生网络的光流估计值和真实标签值,利用教师网络的解码器的特征指导学生网络的训练。该方法和系统可以获得参数量更小但仍具有良好性能的学生网络,该指导学习策略在多个数据集上都取得具有竞争力的性能,并且在很大程度上对模型进行了压缩。
-
-
-
-
-
-
-
-
-