间歇式过热部件的相变储热冷却保温装置及其方法

    公开(公告)号:CN108801027A

    公开(公告)日:2018-11-13

    申请号:CN201810689858.1

    申请日:2018-06-28

    Applicant: 厦门大学

    CPC classification number: F28D20/021

    Abstract: 间歇式过热部件的相变储热冷却保温装置及其方法,涉及相变储热。所述装置设有发热部件、第1冷却管路、第2冷却管路、相变储热装置、第1保温管路、第2保温管路、第1泵、第2泵和被保温部件;所述发热部件通过第1冷却管路和第1泵与相变储热装置连接,所述相变储热装置设有3层微通道,上下两层微通道为保温微通道,上下两层保温微通道之间为冷却微通道,冷却微通道用于填充相变材料,相变储热装置通过第2冷却管路与发热部件连接,相变储热装置通过第1保温管路和第2泵与被保温部件连接,被保温部件通过第2保温管路与相变储热装置连接。实现相变材料的储存能量,加热保温部件,实现能量的循环利用;微通道可强化传热,增加能量利用效率。

    一种基于荧光分子的内毒素的检测方法

    公开(公告)号:CN107941773B

    公开(公告)日:2019-12-10

    申请号:CN201711387565.X

    申请日:2017-12-20

    Applicant: 厦门大学

    Abstract: 一种基于荧光分子的内毒素的检测方法,制作LPS的标准曲线,用纯水或PBS作系列稀释,按LPS总积与SO体积比为1︰10或1︰20加入5x的SO,37℃避光反应5~10min,以425nm为激发波长,检测470nm的发射波长的荧光,或进行500~700nm的范围扫描,以LPS浓度为横坐标,以470nm的荧光值为纵坐标,作图,用线性拟合的方式得到线性方程,对于待测样品,可参照与标准曲线同样的反应条件和系统,检测未知样品的荧光值,并由标准曲线方程计算出相应的LPS的含量;通过荧光光谱强弱的变化,则用于检测小分子与LPS是否存在相互作用,若用于定性分析,则可在荧光显微镜下观察有无荧光出现的方式。

    涡轮冲压组合发动机冲压空气涡轮热电转换及预冷方法

    公开(公告)号:CN106762221B

    公开(公告)日:2018-10-26

    申请号:CN201710025514.6

    申请日:2017-01-13

    Applicant: 厦门大学

    Abstract: 涡轮冲压组合发动机冲压空气涡轮热电转换及预冷方法,涉及组合发动机。提供可满足高马赫数飞行时组合发动机飞行器供电需求及实现涡轮发动机进气道气流预冷目的,结构简单,且进气量可调节,还能减少冲压喷气发动机进气道的溢流阻力的涡轮冲压组合发动机冲压空气涡轮热电转换及预冷方法。当飞行马赫数达到2时,涡轮发动机开始逐渐关闭,冲压喷气发动机进气道打开,冲压喷气发动机开始工作;涡轮发动机进气道完全关闭时,涡轮发动机完全关闭。解决了现有的组合发动机在高超声速飞行时飞机供电不足,在涡轮发动机与冲压喷气发动机同时工作时涡轮发动机压气机前气流温度过高等问题。

    一种基于荧光分子的内毒素的检测方法

    公开(公告)号:CN107941773A

    公开(公告)日:2018-04-20

    申请号:CN201711387565.X

    申请日:2017-12-20

    Applicant: 厦门大学

    Abstract: 一种基于荧光分子的内毒素的检测方法,制作LPS的标准曲线,用纯水或PBS作系列稀释,按LPS总积与SO体积比为1︰10或1︰20加入5x的SO,37℃避光反应5~10min,以425nm为激发波长,检测470nm的发射波长的荧光,或进行500~700nm的范围扫描,以LPS浓度为横坐标,以470nm的荧光值为纵坐标,作图,用线性拟合的方式得到线性方程,对于待测样品,可参照与标准曲线同样的反应条件和系统,检测未知样品的荧光值,并由标准曲线方程计算出相应的LPS的含量;通过荧光光谱强弱的变化,则用于检测小分子与LPS是否存在相互作用,若用于定性分析,则可在荧光显微镜下观察有无荧光出现的方式。

    一种旋转爆震发动机的微通道冷却装置

    公开(公告)号:CN206398760U

    公开(公告)日:2017-08-11

    申请号:CN201720040475.2

    申请日:2017-01-13

    Applicant: 厦门大学

    Abstract: 一种旋转爆震发动机的微通道冷却装置,主要由表面带微型换热通道的内筒、外筒盖板、冷却工质入口管、循环泵、冷却工质出口管及换热器构成,冷却工质入口管位于燃烧室头部,工作时旋转爆震发动机爆震波沿外筒外壁面传播,高温燃气流与壁面直接接触,冷却工质由入口管流入进液口,经周向引流腔整流分散,进入外筒内壁面与内筒构成的微通道内流动与壁面换热,可高效冷却保护燃烧室;冷却工质出口管位于燃烧室尾部,收集经过微通道换热之后的冷却工质,使其流入换热器与燃料进行热交换,再进入循环泵开始下一次的冷却换热循环。

Patent Agency Ranking