一种单层三通带太赫兹滤波超材料

    公开(公告)号:CN116435730A

    公开(公告)日:2023-07-14

    申请号:CN202310360413.X

    申请日:2023-04-06

    Applicant: 南开大学

    Abstract: 本发明提供了一种单层三通带太赫兹滤波超材料,包括一个超材料片层以及设置于所述超材料片层中并呈阵列排布的多个人工微结构,将所述每个人工微结构及其对应的超材料片层部分一起定义为一个超材料单元,每个超材料片层可以看作是由所述超材料单元阵列排布而成,当电磁波进入所述超材料时,利用人工微结构耦合,使得该超材料能够通过三个特定频率范围内的太赫兹波段的电磁波而反射其他频率的电磁波,即等效于一个三通带太赫兹滤波器,可以满足不同太赫兹频段的应用需求;另外,与传统的金属‑电介质和金属‑电介质‑金属滤波超材料相比,这种仅由单超材料片层构成的超材料具有重量轻、价格低廉和易于加工的优势,利用该超材料能够大大降低设计和加工太赫兹器件的加工难度,有利于太赫兹技术的发展。

    一种多通道级联机械长周期光纤光栅传感器

    公开(公告)号:CN116399377A

    公开(公告)日:2023-07-07

    申请号:CN202310337535.7

    申请日:2023-03-31

    Applicant: 南开大学

    Abstract: 本发明属于光纤传感技术领域,具体涉及一种多通道级联机械长周期光纤光栅传感器。其结构由超连续谱光源、传感单元、光谱分析仪组成。所述传感单元由3D打印周期性刻槽平板向少模光纤施加纵向压力,使其机械微弯形成级联机械长周期光纤光栅,有效的激发光纤中的高阶模式。本发明级联机械光纤光栅可以灵活改变其周期性,诱导折射率周期性改变,同时施加不同周期的机械刻槽平板,形成级联机械长周期光纤光栅传感单元,可以实现多通道光纤传感。

    一种基于级联宇称时间对称光纤F-P谐振腔的毫米波发生器

    公开(公告)号:CN114124234A

    公开(公告)日:2022-03-01

    申请号:CN202111401341.6

    申请日:2021-11-24

    Applicant: 南开大学

    Abstract: 一种基于级联宇称时间对称光纤F‑P谐振腔的毫米波发生器,该发生器包括:基于级联宇称时间对称光纤F‑P谐振腔的双波长激光器、掺铒光纤放大器、光电探测器。所述双波长激光器包括:980nm泵浦光源、波分复用耦合器、端面旋涂掺铒离子溶胶‑凝胶薄膜和未掺铒离子溶胶‑凝胶薄膜的布拉格光栅、石英毛细管、软微流导管、普通单模光纤。利用增益和损耗薄膜构建宇称时间对称F‑P谐振腔结构,在奇异点附近可得到双波长激光输出,将输出激光经掺铒光纤放大器放大后输入光电探测器混频,即可获得毫米波输出,通过填充功能材料并调节其折射率还可调谐毫米波输出频率。该毫米波发生器具有输出频率范围宽、频率连续调谐、易于集成、与光纤系统兼容性强等优点。

    一种无机械结构的光束漂移补偿装置及其实现方法

    公开(公告)号:CN112596252A

    公开(公告)日:2021-04-02

    申请号:CN202011604428.9

    申请日:2020-12-30

    Applicant: 南开大学

    Abstract: 本发明公开了一种无机械结构的光束漂移补偿装置及其实现方法,该方法利用探针结构光感知、可编程相位全息图、以及波长相关、偏振相关的液晶光调制,实现光束漂移补偿。该装置包括二向色镜、合束器、空间光调制器、CCD相机、计算机等。其中合束器/二向色镜用于将信号光与信标光共轴合束,第一空间光调制器用于仅调制信标光生成花瓣状沿角向分布的探针结构光,并由CCD相机记录,实现漂移量矢量感知并发送至计算机,由计算机同步控制第一空间光调制器和第二空间光调制器相位全息图中心相对位置和闪耀光栅周期,实现光束漂移补偿。本发明无需机械位移驱动装置,大大提高了补偿精度、响应速度和寿命,是自由空间光通信光束漂移补偿的可靠方案。

    一种基于局域耦合模理论的光子灯笼全矢量数值分析方法

    公开(公告)号:CN112100881A

    公开(公告)日:2020-12-18

    申请号:CN202010871117.2

    申请日:2020-08-26

    Applicant: 南开大学

    Abstract: 一种基于局域耦合模理论的光子灯笼全矢量数值分析方法,涉及光学技术领域。首先,通过数值计算或数学解析求解的方法得出光子灯笼在锥长范围内各横截面上的若干本征模场;随后,基于局域耦合模理论,计算出各局域模式之间的耦合系数;其次,通过三次样条插值方法,对耦合系数矩阵进行插值,得到纳米尺度上的连续耦合系数;随后,通过对任意输入模场进行模式成分分析,得到输入的本征模向量;最后,通过求解耦合模方程,得到光子灯笼中传输的任意模式的振幅,相位,偏振态等信息,最终实现光子灯笼的参数优化设计。该方法可以节约大量的计算成本同时保证了计算精度;对光子灯笼进行针对性的参数优化,为高效率光子灯笼的制造提供指导。

    一种基于干涉理论的少模光纤空间模场检测方法

    公开(公告)号:CN111404600A

    公开(公告)日:2020-07-10

    申请号:CN202010165936.5

    申请日:2020-03-11

    Applicant: 南开大学

    Abstract: 一种基于干涉理论的少模光纤空间模场检测方法。首先,通过仿真软件得出待测光纤在相关波长处能够支持的模式组分;随后,基于干涉理论,提炼出反映简并模式复强度的可测的特征参量;其次,通过建立这些特征参量和简并模式复强度的方程组,使得能够从物理图像中通过算法处理得到各简并模式的复强度,并设计相关算法去实现这一思路。在实验层面,搭建一套检测光纤出射模场的光学装置,并用空间图像探测器记录模斑;由空间图像探测器探测到的图像上,应用上述提到的模式恢复算法,即可得出相应的各阶次简并模式的复强度。本发明能够计算恢复简并模式的复振幅,与传统的只能得到模组强度的方法相比起来更加精确。

    磁性离子液体填充的微结构光纤磁场传感器

    公开(公告)号:CN107607891B

    公开(公告)日:2020-01-31

    申请号:CN201711053596.1

    申请日:2017-10-31

    Applicant: 南开大学

    Abstract: 本发明涉及一种基于磁性离子液体填充的微结构光纤磁场传感器,该传感器的工作原理如下:利用折射率匹配耦合原理实现纤芯模式与离子液体柱中模式的耦合;利用透射光传输方向与磁场方向相垂直时,离子液体对透射光的衰减系数将随着外界磁场强度的增加而改变;利用不同磁场强度下磁性离子液体衰减系数的改变,继而光谱谐振峰强度出现明显变化可以实现对外界磁场强度变化的精确测量。本发明可用于新型光纤磁场传感器研究工作的开展,与以往报道的光纤磁场传感器相比,磁性离子液体的性质相比磁流体更加稳定,测量结果不受基液性质浮动所影响,因此具有更高的准确性。

    一种基于波前相位调制的环境自适应“激光鞘”辅助激光通信装置及方法

    公开(公告)号:CN110572207A

    公开(公告)日:2019-12-13

    申请号:CN201910799962.0

    申请日:2019-08-28

    Applicant: 南开大学

    Abstract: 一种基于波前相位调制的环境自适应“激光鞘”辅助激光通信装置及方法,属于自由空间激光通信技术领域,超短脉冲光在大气中成丝产生“激光鞘”辅助信号光通过湍流,该装置通过波前相位调制器对脉冲光波前相位调谐并同时控制可变倍数扩束镜、变焦透镜模块、超短脉冲激光器实现“激光鞘”空间分布可调谐以达到对信号光实时、最佳的辅助效果。该本发明将激光成丝复杂的非线性过程和时变的链路环境作“黑箱”处理,对超短脉冲光束调谐,克服了“激光鞘”空间分布不易控制、辅助性能波动大的缺点,具有抗湍流能力强、环境自适应的优点,可实现长距离、高稳定度辅助激光通信,并帮助“激光鞘”辅助光通信这一新兴技术的快速应用。

    太赫兹微结构双芯光纤超灵敏微流体传感器

    公开(公告)号:CN110501308A

    公开(公告)日:2019-11-26

    申请号:CN201910923078.3

    申请日:2019-09-27

    Applicant: 南开大学

    Abstract: 本发明提供了一种基于太赫兹微结构纤芯光子晶体光纤的宽带、超灵敏微流体传感器。器件采用双芯光子晶体光纤设计,由包层、左右两纤芯和涂覆层组成。光纤基底材料采用环烯烃类聚合物(TOPAS);包层为三角晶格排列,具有六方对称性的圆形空气孔阵列;左芯采用等差分层微结构,用于增大左芯的模式双折射,同时改变基模色散曲线的斜率;右芯由圆形空气孔内填充待测量液体形成。理论研究表明,在0.5-1.5THz频率范围内,光纤都能够实现精确的折射率传感,器件可检测折射率变化范围为0.019。在1THz,器件的折射率灵敏度达到51.22THz/RIU,优于以往研究结果。本发明利用太赫兹波的宽带特性和双芯光纤基模的交点耦合效应,构建了一个宽带、超灵敏的微流体折射率传感器。在对于传感和测量有高精度要求的生物、化学、医药等领域有非常广阔的应用前景。

    一种基于等差分层微结构的太赫兹高双折射光子晶体光纤

    公开(公告)号:CN110488410A

    公开(公告)日:2019-11-22

    申请号:CN201910848197.7

    申请日:2019-09-09

    Applicant: 南开大学

    Abstract: 本发明提供了一种通过微结构纤芯的等差分层设计,构建的太赫兹超高双折射光子晶体光纤。本发明采用以聚合物材料为基底的折射率引导型光子晶体光纤,光纤包层由三角晶格排列的圆形空气孔组成,纤芯微结构由三角晶格排列的椭圆空气孔组成,椭圆空气孔的尺寸采用等差分层设计,椭圆短轴长度随层数增加而增大。采用本发明所述方法设计的太赫兹光纤,模式双折射能够显著提高。在入射光频率为0.9THz时,光纤的模式双折射最大,达到4.07×10-2。相比于晶格结构完全相同,纤芯微结构尺寸一致的光子晶体光纤,当入射光频率为0.5-1.5THz时,光纤的模式双折射约提高3倍。对于通信、传感、测量等领域偏振器件的应用,本发明能够起到优化设计,显著提高器件性能的作用。

Patent Agency Ranking