基于多尺度预测CNN及龙芯芯片的多类别目标识别方法

    公开(公告)号:CN111950451B

    公开(公告)日:2024-11-22

    申请号:CN202010806204.X

    申请日:2020-08-12

    Abstract: 本发明公开了一种基于多尺度预测CNN及龙芯芯片的多类别目标识别方法,包括:将目标图像输入到搭建好的多尺度背景预测卷积神经网络,输出分类结果;将分类结果为物体的候选框,去除重复的候选框;对多尺度背景预测卷积神经网络充分训练,得到训练好的多尺度背景预测卷积神经网络;视觉摄像头采集视频文件,并且统一尺寸大小;将训练好的多尺度背景预测卷积神经网络模型移植到基于龙芯芯片的嵌入式系统中完成对多类别目标的识别。本发明充分考虑了目标识别快速准确的特点,设计了多尺度背景预测卷积神经网络,利用多尺度网络模型来对多类别目标进行识别,提高了对于多类别目标的识别准确率和速度,并且具有很高的可移植性,应用前景广泛。

    一种穿戴式导航装备中视觉导航特征点提取与匹配方法

    公开(公告)号:CN111460941B

    公开(公告)日:2023-06-09

    申请号:CN202010206651.1

    申请日:2020-03-23

    Abstract: 本发明提供了一种穿戴式导航装备中视觉导航特征点提取与匹配方法,包括:读取两帧原始图像,构建图像的高斯‑拉普拉斯金字塔,生成高斯‑拉普拉斯差分尺度空间;进行特征点检测,将局部极值点作为特征点提取出来;计算出特征点的方向;基于BRIEF算子生成特征点的描述符,对每个点对进行二进制赋值,形成一个二进制编码;基于前一步生成的描述子对两张图像进行特征点的匹配,测量前一帧图中的每一个特征点与后一帧图像中所有特征点的相似程度,将相似程度最大的匹配成一对;重复上一步匹配操作,直到两帧图像中的所有特征点匹配完成,这些匹配好的特征点对为视觉导航提供大量的基础信息,提高导航定位结果的稳定性、环境适应性及抗干扰性能。

    一种基于时空图神经网络的时间序列数据预测方法

    公开(公告)号:CN114428937A

    公开(公告)日:2022-05-03

    申请号:CN202111508244.7

    申请日:2021-12-10

    Abstract: 本发明公开了一种基于时空图神经网络的时间序列数据预测方法,包括:采集道路车流辆数据,生成时间序列数据,根据传感器的空间特征来生成输入特征,捕捉时间特征来生成时间相似矩阵,然后通过映射生成全局时空相关邻接矩阵,再进一步生成组合时空相关邻接矩阵,将输入特征和组合时空相关邻接矩阵送入图神经网络中提取特征,使用Huber损失函数训练模型,预测车流量分布情况,汇总车流量分布。本发明能够对采集到的车流辆数据进行实时更新预测,捕捉到不同交通流数据之间潜在的时间和空间联系,获取道路交通网络的全局信息,用于智能交通系统的监测和管理,此方法具有耗时低、计算复杂度小、实时性高、准确率高的优点,并且适用于其他的时空预测任务。

    一种基于优化交并比函数的道路抛洒物检测与识别方法

    公开(公告)号:CN112232240A

    公开(公告)日:2021-01-15

    申请号:CN202011129588.2

    申请日:2020-10-21

    Abstract: 本发明公开了一种基于优化交并比函数的道路抛洒物检测与识别方法,包括如下步骤:搭建基于优化交并比函数的道路抛洒物检测与识别模型;采集道路交通监控视频并进行分帧处理生成道路抛洒物数据集,对训练集图像进行标注,生成标签文件;将训练集全部图像和标签文件输入道路抛洒物检测与识别模型中进行训练,得到训练好的模型;将测试集图像输入训练好的道路抛洒物检测与识别模型进行检测识别,输出对于道路抛洒物的检测识别结果。本发明能够在复杂道路交通背景下对道路抛洒物进行检测和识别,能够输出道路抛洒物位置信息、类别信息以及大致形状特征,对于小目标有较好的检测识别效果,检测速度快、识别精度高。

    基于多尺度预测CNN及龙芯芯片的多类别目标识别方法

    公开(公告)号:CN111950451A

    公开(公告)日:2020-11-17

    申请号:CN202010806204.X

    申请日:2020-08-12

    Abstract: 本发明公开了一种基于多尺度预测CNN及龙芯芯片的多类别目标识别方法,包括:将目标图像输入到搭建好的多尺度背景预测卷积神经网络,输出分类结果;将分类结果为物体的候选框,去除重复的候选框;对多尺度背景预测卷积神经网络充分训练,得到训练好的多尺度背景预测卷积神经网络;视觉摄像头采集视频文件,并且统一尺寸大小;将训练好的多尺度背景预测卷积神经网络模型移植到基于龙芯芯片的嵌入式系统中完成对多类别目标的识别。本发明充分考虑了目标识别快速准确的特点,设计了多尺度背景预测卷积神经网络,利用多尺度网络模型来对多类别目标进行识别,提高了对于多类别目标的识别准确率和速度,并且具有很高的可移植性,应用前景广泛。

    一种熔池形貌检测及弧焊机器人控制方法

    公开(公告)号:CN111275634A

    公开(公告)日:2020-06-12

    申请号:CN202010031333.6

    申请日:2020-01-13

    Abstract: 本发明公开了一种熔池形貌检测及弧焊机器人控制方法,包括:采集弧焊增材制造熔覆池视频,提取单帧彩色图像,进行灰度变换和噪声滤波;进行掩膜修补,剔除金属液滴区域部分,去除图像多余的部分,利用天牛须搜索自适应阈值算法的边缘检测,进行阈值分割和灰度增强,从而达到对图像进行去噪和增强;通过像素遍历搜寻出熔覆池圆心,再进行区域图像分割、镜像对称和组合,拟合出椭圆,通过圆心遍历出长轴和短轴,对长轴和短轴像素数大小进行计算,判断长轴和短轴的变化量,进而控制弧焊机器人是否继续打印,再根据当前图像是否为最后一帧来决定是否结束循环,进而实现本方法,为弧焊增材制造打印质量提供低成本、高效率的检测分析与控制方法。

Patent Agency Ranking