-
公开(公告)号:CN114816814B
公开(公告)日:2025-04-11
申请号:CN202210293314.X
申请日:2022-03-23
Applicant: 北京邮电大学
IPC: G06F11/07 , G06F18/2433 , G06F18/211 , G06F18/10 , G06F18/214 , G06N5/01 , G06N20/20
Abstract: 本发明实施例提出了一种基于迁移学习的双层动态加权磁盘异常检测方法,包括:收集磁盘SMART信息并对磁盘数据集进行属性特征筛选,之后对其进行指数平滑处理得到稳定磁盘数据集,并提取出目标域磁盘数据集以及多个源域磁盘数据集;计算磁盘数据集源域样本与目标域样本的初始权重;训练各源域对应的迁移模型;加权集成各源域所得模型结果,实现对目标域磁盘的故障检测;随着目标域型号磁盘的不断运行,根据所增加新数据样本,进一步提高磁盘异常检测性能;本发明实施例提供的技术方案,能有效提高新投入磁盘的故障检测效果。
-
公开(公告)号:CN118818414A
公开(公告)日:2024-10-22
申请号:CN202411183169.5
申请日:2024-08-27
Applicant: 北京邮电大学 , 中国电力科学研究院有限公司
IPC: G01R35/04
Abstract: 本发明公开了一种基于动量更新双路重构自校正电能表异常检测方法及系统,属于电能表异常检测技术领域。本发明方法,包括:获取电能表的原始时间序列数据,并基于所述原始时间序列数据生成时间序列集;基于所述时间序列集及基于动量更新Transformer记忆模块的双路重构自校正框架,训练得到用于电能表异常检测的检测模型;基于所述检测模型,根据目标电能表的时间序列集,对所述目标电能表的异常进行检测。本发明增强了模型对正常数据的学习能力同时提高正异常的区分度,提高了异常检测的性能。
-
公开(公告)号:CN118484703A
公开(公告)日:2024-08-13
申请号:CN202410561513.3
申请日:2024-05-08
Applicant: 北京邮电大学 , 中国电力科学研究院有限公司 , 国网山西省电力公司 , 国网山西省电力公司营销服务中心
Inventor: 孟之航 , 高欣 , 李保丰 , 翟峰 , 赵兵 , 郜波 , 秦煜 , 陈昊 , 梁晓兵 , 郑安刚 , 许斌 , 徐萌 , 冯云 , 赵英杰 , 卢建生 , 任宇路 , 石智珩 , 谢振刚 , 杨子成 , 杨帅
Abstract: 本发明公开了一种基于迁移学习的电能表故障分类方法及装置。其中,方法包括:收集电能表的历史故障数据样本集;分别遍历历史故障数据样本集中的每一故障类别样本,将该故障类别下所有样本作为少数类样本集,其余各故障类别的样本作为多数类样本集,生成多个二类数据集;根据预先训练的迁移数据选择器以及迁移任务监督器,分别对多个二类数据集进行对抗迭代,生成多个迁移数据集;分别将多个迁移数据集输入至少数类样本生成模型中,生成多个平衡样本集分别训练分类器,生成多个故障类别分类器;将实时采集的待测故障数据分别输入至多个故障类别分类器,输出多个故障类别概率,并选取多个故障类别概率中最大值作为待测故障数据的故障类别。
-
公开(公告)号:CN116630989A
公开(公告)日:2023-08-22
申请号:CN202310400896.1
申请日:2023-04-14
Applicant: 北京邮电大学 , 中国电力科学研究院有限公司 , 国网山西省电力公司营销服务中心 , 国网山西省电力公司
IPC: G06V30/19 , G06V10/82 , G06N3/0464 , G06N3/045 , G06N3/084
Abstract: 本发明提出了一种智能电表故障检测方法、系统、电子设备及存储介质,包括:预处理智能电表图像数据,得到智能电表图像数据对应的注意力图;根据注意力图的特征轮廓尺寸计算等效粒度,遍历智能电表图像数据后经过聚类挖掘得到鉴别性粒度,指导智能电表图像数据中的每张电表图像自适应划分为多粒度拼图;根据注意力图转换所得的二值图计算特征位置分布,根据特征位置分布规律对所述多粒度拼图进行自适应遮挡,并随机打乱得到多粒度掩码混淆拼图;利用多粒度掩码混淆拼图和原始图像作为检测模型的输入,对智能电表可视故障检测模型进行渐进式训练;将待测电表图像数据输入训练好的智能电表可视故障检测模型,以完成故障类别的检测。
-
公开(公告)号:CN116432964A
公开(公告)日:2023-07-14
申请号:CN202310403864.7
申请日:2023-04-14
Applicant: 北京邮电大学
IPC: G06Q10/0631 , G06F17/16 , G06Q50/06
Abstract: 本发明实施例提出了一种基于收敛交叉映射的电力调度自动化系统故障溯源方法,包括:收集电力调度自动化系统故障前后的运行数据,计算组件故障前后的排列熵,根据排列熵变化量度量组件自身异常程度;计算故障前后组件间收敛交叉映射系数,构建正常状态下电力调度自动化系统的因果图,并根据因果链接变化情况求得组件全局因果关系变化程度;对正常状态下的因果图进行社区划分,在耦合紧密的社区范围内计算组件局部因果关系变化程度,然后结合组件自身异常程度、全局和局部因果关系变化程度拟合故障程度度量指标,根据故障程度排序结果定位故障根因组件。本发明实施例提供的技术方案,能够提高电力调度自动化系统故障溯源的准确性。
-
公开(公告)号:CN113112188B
公开(公告)日:2022-05-17
申请号:CN202110529491.9
申请日:2021-05-14
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于预筛选动态集成的电力调度监控数据异常检测方法,包括:使用电力调度监控历史数据训练一定数量的基检测器;使用孤立森林方法对全部基检测器进行预筛选,筛选掉性能较差的基检测器;使用集成式KNN算法从历史数据中选择与待检测数据欧式距离较小的历史数据作为验证子集;使用最大值法根据筛选后剩余的基检测器在验证子集上的输出生成验证子集的假真值,计算基检测器在验证子集上的输出与假真值的皮尔逊相关系数;使用基于直方图的基检测器选择方法根据皮尔逊相关系数选择基检测器,平均所选基检测器的输出作为待检测数据的检测结果。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。
-
公开(公告)号:CN114399407A
公开(公告)日:2022-04-26
申请号:CN202210147086.5
申请日:2022-02-17
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于动静态选择集成的电力调度监控数据异常检测方法,包括:使用电力调度监控历史数据训练一定数量的基检测器;使用孤立森林剔除性能较差的基检测器;使用平均值法根据剩余基检测器的输出生成历史数据的假真值,并分别将假真值和基检测器的输出转换为二类标签;剔除假真值过小的历史数据,并提取基检测器在剩余历史数据上的元特征和元标签;通过元特征和元标签训练随机森林;提取基检测器在待检测数据上的元特征,将其输入随机森林,根据随机森林的输出选择基检测器,取所选基检测器的输出的最大值作为待检测数据的检测结果。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。
-
公开(公告)号:CN113822054A
公开(公告)日:2021-12-21
申请号:CN202110758581.5
申请日:2021-07-05
Applicant: 国网冀北电力有限公司 , 国家电网有限公司 , 北京邮电大学
IPC: G06F40/253 , G06F40/232 , G06F40/58 , G06F40/56 , G06N3/08 , G06N3/04
Abstract: 本发明公开了一种基于数据增强的中文语法纠错方法及装置,其中该方法包括:在训练神经语法纠错模型过程中,以预设固定概率,将当前轮训练批次的输入源语句中的每个字通过BART噪声函数进行映射处理,得到含有不同类型语法错误的句子;将含有不同语法错误的句子及对应的目标语句作为当前轮的含噪样本对,训练神经语法纠错模型,得到数据增强处理后的神经语法纠错模型;利用增强处理后的该模型进行中文语法纠错处理。本发明可以通过基于BART噪声器来实现数据增强,在模型训练的过程中自动生成大量含有不同类型语法错误的含噪文本,进而得到高性能的神经语法纠错模型,利用该高性能的神经语法纠错模型可以实现高效准确地进行中文语法纠错。
-
公开(公告)号:CN109886348A
公开(公告)日:2019-06-14
申请号:CN201910153794.8
申请日:2019-03-01
Applicant: 北京邮电大学
IPC: G06K9/62
Abstract: 本发明实施例提出了一种基于杠杆原理度量中心偏移的异常检测方法,包括:使用Min-Max归一化方法处理训练数据集,对处理后的训练数据集按比例随机抽样得到子集,并将子集的均值向量作为支点中心;在训练数据集中使用Min-Max归一化方法处理测试点,将处理后的测试点复制一定数目加入子集,计算扩增后子集的均值向量,得到新支点中心;计算扩增前后支点中心的欧氏距离,作为测试点的异常得分;对子集中每条数据的异常得分进行多项式函数拟合,将函数梯度位于黄金分割处的异常得分作为数据正、异常阈值,并结合子集的偏度对后续测试点正、异常进行标定。本发明实施例提供的技术方案,可以有效解决异常检测方法计算复杂度高及参数调优难度大等问题。
-
公开(公告)号:CN108972560A
公开(公告)日:2018-12-11
申请号:CN201810965656.5
申请日:2018-08-23
Applicant: 北京邮电大学
IPC: B25J9/16
Abstract: 本发明实施例公开了一种基于模糊优化的欠驱动机械臂分层滑模控制方法。包括:建立平面二自由度主动-被动型(AP型)欠驱动机械臂动力学模型,将非线性耦合动力学模型简化为仿射非线性系统形式,以两个关节角度作为控制目标;然后,设计分层滑模控制器,将每个关节的角度和角速度组成一个子系统,求解两个子系统等效输入,并利用李雅普诺夫反馈函数法构造滑模总切换面,得到控制率;最后,设计模糊规则动态优化滑模控制率中的切换鲁棒项,解决以往控制系统存在的抖振问题。与其他平面二自由度AP型机械臂控制方法相比,本发明实施例所提出的技术方案可以降低控制过程的稳态时间并提高控制精度。
-
-
-
-
-
-
-
-
-