一种基于忆阻器可编程神经网络加速器

    公开(公告)号:CN113869504B

    公开(公告)日:2022-08-05

    申请号:CN202111456235.8

    申请日:2021-12-02

    Abstract: 本发明属于新型智能计算处理器领域,涉及一种基于忆阻器可编程神经网络加速器,通过接口与SOC总线串接,该加速器包括:指令处理模块、控制单元、执行单元模块,其中,控制单元控制连接指令处理模块和执行单元模块,指令处理模块由指令存储器、取指令单元、指令译码单元依次连接组成为一体,对指令进行存取译码后,将指令信息传达给控制单元,以及将指令上的数据给到执行单元模块,执行单元模块包括:算术逻辑单元、向量处理单元、数据存储器和忆阻器存算单元;算术逻辑单元和向量处理单元,分别对应负责寄存器计算和向量计算;数据存储器与忆阻器存算单元相连后,接入向量处理单元。本发明具有高灵活度,低带宽要求,低功耗,高并行度的优点。

    基于忆阻器的卷积神经网络加速器核心的模拟方法及装置

    公开(公告)号:CN114399037B

    公开(公告)日:2022-07-15

    申请号:CN202210293602.5

    申请日:2022-03-24

    Abstract: 本发明公开了基于忆阻器的卷积神经网络加速器核心的模拟方法及装置,支持除常见的正负权值映射形式外还支持补码形式的RRAM权重映射,通过将RRAM核心与外围电路抽象成各个模块并将位移寄存器与RRAM的卷积过程封装成更粗粒度的事务,在保证模型功能与精度的前提下简化芯片上外围数字电路的模型结构。本发明利用高级语言搭建RRAM核心的TLM模型,支持模拟RRAM核心的功耗、延迟、算力、面积等关键参数,比传统RTL模型仿真速度快1000倍以上,帮助芯片设计人员在芯片RTL模型完成前对芯片特性进行研究,缩短芯片的研发周期。

    一种基于忆阻器的神经网络处理连续图像的方法和装置

    公开(公告)号:CN114463161A

    公开(公告)日:2022-05-10

    申请号:CN202210377006.5

    申请日:2022-04-12

    Abstract: 本发明涉及忆阻器应用技术领域,尤其涉及一种基于忆阻器的神经网络处理连续图像的方法和装置,该方法包括以下步骤:步骤一,对神经网络的每一层进行阵列映射,并对阵列上的计算核进行串并行排列;步骤二,将单张图像输入经过步骤一设置的神经网络,统计出神经网络的每一层的图像处理时间,得到神经网络对单张图像处理的总时长,后选取出处理时间最长的神经网络层并得到其对应的处理时长,根据总时长和单层神经网络最长处理时长,得到神经网络的最大并行图像数量;步骤三,输入小于或等于最大并行图像数量的图像至经过步骤一设置的神经网络,进行并行处理。本发明加快了忆阻器上深度神经网络处理大量或者连续图像的效率。

    基于忆阻器的卷积神经网络加速器核心的模拟方法及装置

    公开(公告)号:CN114399037A

    公开(公告)日:2022-04-26

    申请号:CN202210293602.5

    申请日:2022-03-24

    Abstract: 本发明公开了基于忆阻器的卷积神经网络加速器核心的模拟方法及装置,支持除常见的正负权值映射形式外还支持补码形式的RRAM权重映射,通过将RRAM核心与外围电路抽象成各个模块并将位移寄存器与RRAM的卷积过程封装成更粗粒度的事务,在保证模型功能与精度的前提下简化芯片上外围数字电路的模型结构。本发明利用高级语言搭建RRAM核心的TLM模型,支持模拟RRAM核心的功耗、延迟、算力、面积等关键参数,比传统RTL模型仿真速度快1000倍以上,帮助芯片设计人员在芯片RTL模型完成前对芯片特性进行研究,缩短芯片的研发周期。

    一种忆阻器阵列上符号数映射方法

    公开(公告)号:CN113870921B

    公开(公告)日:2022-03-18

    申请号:CN202111456209.5

    申请日:2021-12-02

    Abstract: 本发明公开了一种忆阻器阵列上符号数映射方法,该映射方法将有符号数以补码的表达形式直接映射在忆阻器阵列上,并依据不同映射数的位宽以及忆阻器精度获得映射方案。首先,需要确认当前忆阻器类型器件为二值还是多值,如果是多值器件需再确认单元精度;然后,确定所映射符号数的位宽,并将符号数转为补码形式下的二进制数;最后,得出该符号数映射方案。本发明适用于神经网络计算,该方法映射符号数所占用忆阻器资源消耗小,通用性强,数值覆盖范围和实际表达范围一样。

Patent Agency Ranking