-
公开(公告)号:CN115617962A
公开(公告)日:2023-01-17
申请号:CN202110806921.7
申请日:2021-07-16
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/332 , G06F16/9532 , G06F40/279
Abstract: 本发明提供一种网络公害文本识别方法及装置,包括:通过提取目标网络文本中的网址链接,对目标网络文本进行初步判定;若无法判定,则计算无效信息度,并生成目标网络文本的拼音列表、关键词列表、及关键词拼音列表;通过各关键词的字元素在目标网络文本中的分布及关键词拼音在目标网络文本拼音列表中的分布,计算各关键词的网络公害分;基于无效信息度对网络公害分进行修订,并根据修订结果,得到网络公害文本识别结果。本发明通过网络公害关键词字符和拼音的模糊匹配,可以准确识别出网络公害文本,同时可以有效应对目标文本中网络公害词被分割、倒序、文字竖排、谐音字等信息隐藏手段。
-
公开(公告)号:CN111708887B
公开(公告)日:2022-09-23
申请号:CN202010542354.4
申请日:2020-06-15
Applicant: 国家计算机网络与信息安全管理中心 , 杭州东信北邮信息技术有限公司
Abstract: 一种自定义规则的多模型融合的不良呼叫识别方法,包括:构建规则策略模型:设置若干条规则,将多条规则通过逻辑运算符连接构成策略,并设置策略的模型融合方式,由所有策略构成规则策略模型;构建识别不良呼叫的卷积神经网络和基于不良呼叫投诉的BERT文本分类模型;根据策略包含的规则的计算式,为每条策略生成递归计算表达式,然后执行递归计算表达式以获得策略执行结果,同时,运行卷积神经网络和BERT文本分类模型以获得输出结果,最后根据每条策略的模型融合方式和执行结果、卷积神经网络和BERT文本分类模型的输出结果,计算得到不良呼叫识别结果。本发明属于信息技术领域,能将规则和隐性表征模型有效融合到不良呼叫识别技术中。
-
公开(公告)号:CN113436619B
公开(公告)日:2022-08-26
申请号:CN202110594164.1
申请日:2021-05-28
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G10L15/06 , G10L15/08 , G10L19/18 , G10L25/18 , G10L25/24 , G10L25/27 , G10L25/30 , G10L25/45 , G10L25/54 , H04L9/32 , G10L15/14
Abstract: 本发明提供了一种语音识别解码的方法及装置。语音识别解码方法包括:确定待识别语音的N个子帧所对应的对数梅尔谱特征序列;通过经训练的神经网络编码器,处理所述对数梅尔谱特征序列,得到所述N个子帧各自对应的字符或者空白符的发射概率;根据预先确定的第一加权有限状态转移器以及所述N个子帧各自对应的的字符或者空白符的发射概率,采用束搜索算法搜索分数最高的词语序列。相比于传统的语音识别系统,本申请省略了帧级别对齐的流程,简化了训练和解码的流程;相比于端到端语音识别系统,在束搜索算法过程中使用加权有限状态转移器加快解码速度,高效地利用训练音频数据之外的文本数据,可以在多种领域快速部署语音识别系统。
-
公开(公告)号:CN113835387A
公开(公告)日:2021-12-24
申请号:CN202111089659.5
申请日:2021-09-16
Applicant: 国家计算机网络与信息安全管理中心 , 珠海高凌信息科技股份有限公司
IPC: G05B19/048 , H04Q9/00 , G07C1/20
Abstract: 本发明实施例公开了运维管理方法、系统及介质,其中方法包括以下步骤:基于数据采集接口收集业务数据和告警数据;基于告警预测模型得到预测业务数据;基于业务告警模型,对比所述预测业务数据和所述业务数据,若超过设定阈值则产生告警;基于告警自动匹配模型,根据所述告警数据进行标识恢复告警处理;基于巡检机器人采集环境特征数据,并根据所述环境特征数据确定是否告警。本发明实施例能够提高运维的效率。
-
公开(公告)号:CN113765556A
公开(公告)日:2021-12-07
申请号:CN202111134795.1
申请日:2021-09-27
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04B7/0456 , H04B7/0413 , H04B17/318 , H04L5/00 , H04L25/02 , H04W12/00
Abstract: 本公开提供一种数据传输方法、装置、电子设备及存储介质。该方法包括:接收合法用户发送的导频信号;根据所述导频信号进行信道估计,获得信道状态信息;对所述信道状态信息进行混合预编码,获得混合预编码矩阵;基于零空间的人工辅助噪声序列对所述信道状态信息进行预编码,获得人工噪声预编码矩阵;使用所述混合预编码矩阵和所述人工噪声预编码矩阵进行数据传输。该方法可以保证基站与合法用户间数据的安全传输。
-
公开(公告)号:CN113052270A
公开(公告)日:2021-06-29
申请号:CN202110503779.9
申请日:2021-05-10
Applicant: 清华大学 , 国家计算机网络与信息安全管理中心
Abstract: 本申请涉及一种分类精度评价方法、装置、计算机设备和存储介质。所述方法包括:获取有害语音样本集;将有害语音样本集中的每个有害语音样本输入待评价的有害语音分类模型中进行分类,得到预测类别标签;在预设的分类层级中,确定与预测类别标签和有害语音样本的样本类别标签对应的目标分类;根据目标分类计算待评价的有害语音分类模型的分类精确程度。本方案中,对有害语音样本进行了多层次的分类(即分类层级),然后在分类层级中确定预测类别标签和样本类别标签共同所属的目标分类,目标分类可以反映预测类别标签和样本类别标签的匹配度,进而根据目标分类确定分类模型的分类精确程度,能够有效的提高分类模型评价的准确度。
-
公开(公告)号:CN109359126B
公开(公告)日:2021-06-04
申请号:CN201811009136.3
申请日:2018-08-30
Applicant: 国家计算机网络与信息安全管理中心 , 天津市国瑞数码安全系统股份有限公司
IPC: G06F16/242 , G06F16/2453
Abstract: 本发明属于数据查询技术领域,具体而言,涉及一种基于业务用户习惯的智能学习查询模型的构建方法,包括如下步骤:S1、从数据源中获取业务用户的数据查询记录;S2、根据步骤S1中得到的所述数据查询记录,进行数据查询习惯分析;S3、根据步骤S2中得到的数据查询习惯分析结果构建查询模型。本发明还提供了一种基于业务用户习惯的智能学习查询系统。本发明通过对业务用户的数据查询习惯进行分析,针对分析结果制定数据查询方案,构建查询模型,能够提前将业务用户关注的数据推送给业务用户,具有查询时间短、用户体验效果好的特点。
-
公开(公告)号:CN112712096A
公开(公告)日:2021-04-27
申请号:CN201911022350.7
申请日:2019-10-25
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了基于深度递归非负矩阵分解的音频场景分类方法及系统,该方法包括:将待分类的音频信号按照贝叶斯信息准则进行音频场景切分;将切分后的每一段音频划分为多个块,每个块包括多个音频帧;以块为单位分别输入多个预先训练好的深度递归NMF网络,得到每块音频在不同子空间中的展开特征;将不同子空间中的展开特征拼接为一个长特征向量,输入支持向量机,获得每块音频的类别判别结果;计算该段音频所有块的类别判别结果的均值,由此得到该段音频的所属类别。本发明的方法将深度NMF用于音频场景分类,通过探索相邻帧之间NMF系数的递归关系,降低模型复杂度,提高泛化能力。
-
公开(公告)号:CN112466281A
公开(公告)日:2021-03-09
申请号:CN202011092988.0
申请日:2020-10-13
Applicant: 讯飞智元信息科技有限公司 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了有害音频识别解码方法及装置,该方法包括:获取待识别音频数据,提取待测音频中的声学特征,对所述声学特征进行有效音频检测得到有效音频段;将所述有效音频段输入到有害音频分类网络模型,从文本意图的角度对待测样本进行分类,输出文本集合分类结果;将所述文本集合分类结果输入声学模型中输出解码结果。本发明通过对声学特征进行有效音频检测得到有效音频段;将所述有效音频段输入到有害音频分类网络模型,从文本意图的角度对待测样本进行分类,输出文本集合分类结果;将所述文本集合分类结果输入声学模型中输出解码结果,通过构建元学习的目标函数,获取大数据量的意图分类网络参数更新过程,提高有害音频识别解码的准确率。
-
公开(公告)号:CN111785281A
公开(公告)日:2020-10-16
申请号:CN202010554305.2
申请日:2020-06-17
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
IPC: G10L17/02 , G10L17/04 , G10L17/06 , G10L17/18 , G10L21/0208
Abstract: 本发明公开了一种基于信道补偿的声纹识别方法及系统,该方法包括如下步骤:步骤SS1:初始化去噪网络G和判别网络D;步骤SS2:输入噪声音频到去噪网络G,生成fake音频,将所述fake音频和真实的干净音频送入到判别网络D进行训练,更新判别网络D的网络参数,得到新一代判别网络D1;步骤SS3:冻结判别网络D1的参数,在去噪网络G中输入噪声音频,同时将对应的判别标签设为True,来欺骗判别网络D1;步骤SS4:重复步骤SS2至步骤SS3,直至判别网络D收敛,转入步骤SS5;步骤SS5:去噪网络G输出增强音频信号。本发明对于声纹识别大幅提高了整体准确率。
-
-
-
-
-
-
-
-
-