基于数据分布扩充的跨域自适应语义分割方法及系统

    公开(公告)号:CN113221902B

    公开(公告)日:2021-10-15

    申请号:CN202110511220.0

    申请日:2021-05-11

    Abstract: 本发明涉及一种基于数据分布扩充的跨域自适应语义分割方法及系统,所述跨域自适应语义分割方法包括:获取不同域训练数据集;分别对源域图像及目标域图像进行傅里叶变换,得到对应的源频域图像及目标频域图像;对源频域图像进行高频滤波,得到高频信息;对目标频域图像进行低频率波,得到低频信息;根据高频信息及低频信息,通过傅里叶反变换,得到转换图像;基于转换图像,对源域图像及目标域图像进行数据增强,得到源域扩充图像及目标域扩充图像;确定第一语义分割损失模型、第一对抗损失函数、第二对抗损失函数、语义一致性损失函数;确定第二语义分割损失模型;基于第二语义分割损失模型,可对待处理图像进行准确的语义分割,提高分割精度。

    基于类别外部记忆的视频目标检测方法、系统、装置

    公开(公告)号:CN111723719A

    公开(公告)日:2020-09-29

    申请号:CN202010536900.3

    申请日:2020-06-12

    Abstract: 本发明属于领域,具体涉及了一种基于类别外部记忆的视频目标检测方法、系统、装置,旨在解决现有技术中当辅助帧数量较小时目标检测性能下降明显的问题。本发明包括:先根据训练视频信息通过自注意机制训练视频目标检测模型,再通过训练好的视频目标检测模型和自注意机制获得待测视频增强的实例特征,最后将增强后的实例特征输入通用目标检测网络的分类分支和边界框回归分支得到目标检测结果。本发明降低了现有技术中基于特征整合的视频目标检测方法对辅助帧数目的敏感性,使在辅助帧较少或没有辅助帧的情况下也能准确地进行目标检测。

    基于双流生成对抗网络的跨视角步态识别装置及训练方法

    公开(公告)号:CN108596026B

    公开(公告)日:2020-06-30

    申请号:CN201810217938.7

    申请日:2018-03-16

    Abstract: 本发明属于计算机视觉和模式识别领域,具体涉及一种基于双流生成对抗网络的跨视角步态识别装置及训练方法。旨在解决跨视角步态识别准确率不高的问题。具体包括:通过一个全局流生成对抗网络模型学习一个标准角度的全局流步态能量图像;利用三个局部流生成对抗网络模型学习标准角度的局部流步态能量图像;该方法中的全局流模型能够学到全局步态特征,在全局流模型的基础上,加入局部流网络,可以学到局部步态特征;通过在双流生成对抗网络的生成器上加入像素级约束可以恢复步态细节;通过将全局步态特征和局部步态特征进行融合,可以提升步态识别准确率。该方法对于步态图像具有极强的鲁棒性,可以较好的解决跨视角步态识别问题。

Patent Agency Ranking