-
公开(公告)号:CN115019087B
公开(公告)日:2024-11-19
申请号:CN202210557333.9
申请日:2022-05-20
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
IPC: G06V10/764 , G06V10/774 , G06V10/80 , G06V10/77
Abstract: 本发明提供一种小样本视频分类和分类模型训练方法及其装置,涉及计算机视觉技术领域,所述分类方法包括:将小样本分类任务输入预先构建的收敛的压缩域长短时Cross‑Transformer模型,获取压缩域信息;基于压缩域信息,获取短时融合的帧特征;基于短时融合的帧特征,获取查询特征,并输出基于查询特征获取的小样本分类任务中查询视频对各个查询类别原型所属支撑类别的分类分数,其中,分类分数最大的支撑类别用于表示查询视频的分类结果。本发明可实现少量示例视频下的快速、高精度、高效率的小样本视频分类。
-
公开(公告)号:CN118014049A
公开(公告)日:2024-05-10
申请号:CN202410177798.0
申请日:2024-02-08
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
IPC: G06N3/09 , G06N3/0455 , G06F18/22 , G06F18/2431 , G06F40/30 , G06V20/70 , G06V10/40 , G06V10/82
Abstract: 本发明提供一种图文互生模型的训练方法,该方法包括:基于模态自感单元从样本模态数据中提取自感信息;模态自感单元基于自注意力网络通过多任务有监督训练得到;基于图文编码器对自感信息进行编码,得到隐空间特征,并对隐空间特征进行多模态扩散处理,得到扩散后的目标模态类型的隐空间特征;基于图文解码器对自感信息和扩散后的目标模态类型的隐空间特征进行解码,得到解码信息;根据解码信息和多任务损失函数对图文编码器和图文解码器进行训练,得到图文互生模型;目标损失包括重建损失、图像类的理解辅助任务对应损失和文本类的理解辅助任务对应损失确定。本发明所述方法提高了图文互生对应模型的性能和可适配性。
-
公开(公告)号:CN112950576B
公开(公告)日:2023-04-07
申请号:CN202110220740.6
申请日:2021-02-26
Applicant: 中国科学院自动化研究所 , 人民中科(济南)智能技术有限公司
IPC: G06T7/00 , G06T5/00 , G06V10/80 , G06V10/82 , G06V10/764 , G06N3/0464 , G06N3/082
Abstract: 本发明涉及一种基于深度学习的输电线路缺陷智能识别方法及系统,所述智能识别方法包括:获取待测输电线路图像;根据所述输电线路图像,基于多分辨率融合金字塔,确定粗粒度多分辨率层特征信息;根据所述粗粒度多分辨率层特征信息,基于细粒度交互金字塔,得到细粒度多分辨率层特征信息;根据所述细粒度多分辨率层特征信息,基于特征增强金字塔,得到增强特征图像;根据增强特征图像,确定待测输电线路的缺陷类别及缺陷位置,可提高对多尺度目标的检测精度。
-
公开(公告)号:CN115527140A
公开(公告)日:2022-12-27
申请号:CN202210786900.8
申请日:2022-07-04
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
Abstract: 本发明提供一种敏感内容检测方法、装置、电子设备和存储介质,涉及内容安全技术领域,所述方法包括:获取待检测视频;将待检测视频输入至视觉元素分析模型,得到视觉元素分析模型输出的视觉元素结果和视觉特征;将待检测视频输入至听觉元素分析模型,得到听觉元素分析模型输出的听觉元素结果和听觉特征;将视觉特征和听觉特征输入至事件检测模型,输出用于表征是否包含敏感内容的事件检测结果;将视觉元素结果和听觉元素结果与敏感内容规则库匹配,输出敏感事件类型,并结合事件检测结果和敏感事件类型,确定敏感内容检测结果。本发明可实现对视频敏感内容的全面检测,提升检测灵活度和准确度。
-
公开(公告)号:CN114666571A
公开(公告)日:2022-06-24
申请号:CN202210214422.3
申请日:2022-03-07
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
Abstract: 本发明提供一种视频敏感内容检测方法及系统,该方法包括:对待检测视频执行解码方法的部分步骤,提取所述待检测视频的压缩域信息;根据所述压缩域信息判断所述待检测视频的质量是否合格;在所述待检测视频的质量不合格的情况下,确定所述待检测视频中不存在敏感内容;在所述待检测视频的质量合格的情况下,根据所述压缩域信息对所述待检测视频进行敏感内容检测,确定所述待检测视频中是否存在敏感内容。本发明降低了敏感内容检测的资源消耗,提高检测效率和检测准确率。
-
公开(公告)号:CN110782019A
公开(公告)日:2020-02-11
申请号:CN201911029615.6
申请日:2019-10-28
Applicant: 中国科学院自动化研究所
IPC: G06N3/04
Abstract: 本发明属于人工智能领域,具体涉及一种基于分解和剪枝的卷积神经网络压缩方法、系统、装置,旨在解决采用低秩近似分解或结构化稀疏剪枝进行卷积神经网络压缩,导致压缩力度较小的问题。本系统方法包括将每个待压缩的卷积层后面添加一层系数矩阵表示层;通过低秩近似分解算法对系数矩阵表示层进行稀疏处理,并根据系数矩阵表示层稀疏的位置对对应的卷积层的滤波器进行剪枝处理;采用结构化稀疏剪枝方法对分解后的系数矩阵表示层进行稀疏处理,并根据系数矩阵表示层稀疏的位置对其滤波器进行剪枝处理;对稀疏剪枝处理后的卷积神经网络进行训练。本发明通过将低秩近似分解和结构化稀疏剪枝两种方法融合,解决了单一方法引起的缺陷,提高了压缩力度。
-
-
-
-
-