一种基于多输出分类模型的分类方法、计算机设备及介质

    公开(公告)号:CN113139532A

    公开(公告)日:2021-07-20

    申请号:CN202110690722.4

    申请日:2021-06-22

    Abstract: 本发明提供了一种基于多输出分类模型的分类方法、计算机设备及介质,包括获取标定矿区的遥感数据,从所述标定矿区的遥感数据中提取多光谱影像和DEM数据,基于所述多光谱影像和所述DEM数据提取浅层特征,其中,所述浅层特征包括浅层光谱‑空间特征和浅层地形特征;将所述浅层光谱‑空间特征进行堆叠、将所述浅层地形特征进行堆叠,分别输入至多分支深度置信网络模型,获得融合特征;将所述融合特征分别输入至少两个分类器,获得至少两个二级地物标签,可以有效提取并融合不同模态的深度特征,结合多模型融合和多输出策略,有利于提高复杂景观区土地覆盖精细分类的精度。

    一种基于通道注意力机制的遥感场景分类方法及装置

    公开(公告)号:CN111339862B

    公开(公告)日:2021-04-27

    申请号:CN202010097209.X

    申请日:2020-02-17

    Abstract: 本发明公开了一种基于通道注意力机制的遥感场景分类方法及装置,属于遥感图像信息提取领域。本发明主要包括以下步骤:1.数据集预处理。将公开的场景数据集进行增强和归一化等预处理,增强网络的鲁棒性;2.建立基于通道注意力的密集连接网络。基于通道注意力的密集连接网络包括密集连接网络,通道注意力机制,和标签平滑损失函数三个部分。3.训练网络后进行精度评价。将预处理后的数据输入特征复用网络进行训练,然后利用训练完成后的网络完成对待分类的遥感场景数据的场景分类。

    一种基于文本数据的遥感图像风格转换方法

    公开(公告)号:CN111325660A

    公开(公告)日:2020-06-23

    申请号:CN202010104072.6

    申请日:2020-02-20

    Abstract: 本发明提供一种基于文本数据的遥感图像风格转换方法,包括:构建数据集,获取文本数据集和待转换图像数据集;生成低分辨率的图像,根据文本数据提取句子特征,然后结合噪声生成低分辨率的遥感图像和对应的图像特征;生成高分辨率的图像,根据文本数据提取单词特征,然后结合上一层低分辨率的特征生成下一层的高分辨率的遥感图像和图像特征;计算损失函数,检测生成的图像和文本的匹配程度,生成相应的损失函数;图像风格转换,以生成的高分辨率图像作为参考风格图像,依据循环一致性原理和对抗损失函数进行风格转换。本发明的有益效果是:从文本数据逐层生成高分辨率图像,极大地提高了文本到图像的生成精度,弥补了文本数据进行风格转换的空缺。

    基于LiDAR的复杂地质背景区滑坡识别的方法及系统

    公开(公告)号:CN102819023A

    公开(公告)日:2012-12-12

    申请号:CN201210265541.8

    申请日:2012-07-27

    Abstract: 本发明公开了一种基于LiDAR的复杂地质背景区滑坡识别的方法及系统,其中方法包括以下步骤:S1、对LiDAR数据进行处理生成消除植被影响后裸地表的DEM数据;S2、提取传统的地貌特征参数以及计算纹理特征参数,生成特征参数文件;S3、确定最优特征参数组合;S4、获得满足预设精度条件的平衡系数;S5、计算平均用户精度、平均生产者精度和总体精度;S6、若满足精度要求,则使用边缘检测算子计算滑坡边界,实现滑坡识别。本发明的实现对数据需求少,可充分挖掘LiDAR-DEM数据在滑坡地形分析中的应用潜力;模型分类精度很高,能够实现复杂地质背景区滑坡边界的自动识别。

    一种高光谱图像子空间聚类方法及系统

    公开(公告)号:CN118351341A

    公开(公告)日:2024-07-16

    申请号:CN202410236075.3

    申请日:2024-03-01

    Abstract: 本发明提供一种高光谱图像子空间聚类方法及系统,涉及遥感图像处理技术领域,所述方法包括:根据待聚类高光谱图像的空谱特征和纹理特征得到待聚类高光谱图像的特征视图;将进行数据增强后的空谱特征视图和纹理特征视图输入图卷积神经网络得到空谱特征视图和纹理特征视图分别对应的节点表征和全局表示;根据空谱特征视图和纹理特征视图对应的全局表示和节点表征,进行多层级对比学习得到待聚类高光谱图像的图嵌入;根据图嵌入得到待聚类高光谱图像的自表达系数矩阵;根据自表达系数矩阵构建亲和矩阵,并根据亲和矩阵进行谱聚类。本申请通过深层特征学习和多层级对比学习,提取和融合空谱和纹理信息,确保了特征表达的充分性和聚类任务的精确性。

Patent Agency Ranking