-
公开(公告)号:CN115938525A
公开(公告)日:2023-04-07
申请号:CN202211268621.9
申请日:2022-10-17
Applicant: 东南大学
IPC: G16H10/60 , G16H15/00 , G16H50/30 , G06F40/295 , G06F18/22 , G06F18/214 , G06F18/2415
Abstract: 本发明公开了一种基于电子病历信息的非酒精性脂肪肝疾病信息处理方法,该方法收集病人电子病历信息,筛选出病人入院记录的原始文本信息作为病历数据集,通过命名实体识别提取出关键预测指标信息,得到结构化病历数据;将数据送入根据国际专家共识构建的MAFLD专家系统疾病概率预测模型,模型根据专家意见设置各诊断指标权重,经过三个模块对异常指标的判断,自动预测患者是否患有非酒精性脂肪肝以及患病概率,并给出此患者患病相应的预测依据;本方法利用电子病历信息,实现非酒精性脂肪性肝病的重要信息的提取和处理,为后续医生疾病的诊断提供重要参考依据,提高了疾病预测的准确率和效率。
-
公开(公告)号:CN109801268B
公开(公告)日:2023-03-14
申请号:CN201811620359.3
申请日:2018-12-28
Applicant: 东南大学
Abstract: 本发明公开了一种基于三维卷积神经网络的CT造影图像肾动脉分割方法,涉及图像处理技术领域,设计了一种应用于CT造影图像肾动脉分割的三维卷积网络结构,利用手工标注获得肾动脉数据集,然后将训练集送入该网络结构进行训练,得到训练模型,利用得到的训练模型对新的肾脏数据进行预测,得到肾动脉分割掩模。本发明能够获得高准确率的输出结果,能够解决肾动脉难分割的问题,通过本发明能够直接得到肾动脉分割掩模。
-
公开(公告)号:CN112508844B
公开(公告)日:2022-11-18
申请号:CN202011060583.9
申请日:2020-09-30
Applicant: 东南大学
Abstract: 本发明公开了一种基于弱监督的大脑磁共振图像分割方法,包括以下步骤:使用超体素匹配方法实现待分割图像与参考图像之间的匹配,使得待分割图像的超体素获得标签,在待分割图像匹配的超体素中,选择高置信度的超体素组成种子区域;建立一种脑组织分割网络模型BTSNet,以选择的种子区域作为监督标签,指导网络训练,获得图像每个体素的类别概率;采用了深度种子区域增长方法,以当前种子区域为基础,使用卷积网络输出的类别概率,更新种子区域;最后,迭代脑组织分割网络与深度种子区域增长两个步骤,直至种子区域覆盖整个图像,输出分割结果。本发明能够在只使用少量参考图像的超体素级别标签的条件下实现脑MRI图像的准确分割。
-
公开(公告)号:CN109389585B
公开(公告)日:2021-11-02
申请号:CN201811102450.6
申请日:2018-09-20
Applicant: 东南大学
Abstract: 本发明公开了一种基于全卷积神经网络的脑组织提取方法,包括以下步骤:首先,采用全卷积分割网络对二维的原始核磁共振图进行初步分割,得到初步分割结果;其次,根据初步分割结果分离脑组织内部以及边界信息;再次,选取这些无法确定是否为脑组织的像素点,作为边界候选像素,将这些候选像素及其邻域送到卷积神经网络中进行二次分割,实现分类判决;最后,整合初步分割得到的内部分割结果以及二次分割得到的边界分割结果,进而获得最终的脑组织提取分割结果。本发明进行粗细两次分割,既保证了本方法的计算效率,又实现了精细化分割目标,能较好地应用于大脑磁共振图像,实现更为精确的脑组织与颅骨、眼球、皮肤、脂肪等非脑组织的剥离。
-
公开(公告)号:CN109285176B
公开(公告)日:2021-11-02
申请号:CN201811166740.7
申请日:2018-10-08
Applicant: 东南大学
Abstract: 本发明公开了一种基于正则化图割的大脑组织分割方法,首先基于强度距离和空间相似度,设计新的体素间相似度计算方法,从而对体素进行聚类,把大脑MRI图像分割为一系列均匀并且较好地贴合图像边缘的超体素;随后明通过把大脑不同组织的先验概率融入到图割框架中,设计一个能量计算公式,计算每个超体素在分配不同标签时各个部分的能量值,从而使用图割方法对超体素分割,把Magnetic Resonance Imaging(MRI)图像分割成不同的组织。本发明能够从最初的脑部MRI分割出三种脑组织,分割结果中各个组织间边界贴合度高。与已有的MRI图像分割方法相比,本发明分割效果更好,边界贴合度更高,效率更高,处理速度更快,可以较好地抑制噪声的影响。
-
公开(公告)号:CN109035197B
公开(公告)日:2021-09-28
申请号:CN201810552230.7
申请日:2018-05-31
Applicant: 东南大学
Abstract: 本发明公开了一种基于三维卷积神经网络的CT造影图像肾脏肿瘤分割方法。该方法首先粗略分割出CT造影图像中的肾脏区域,并对其中的肾脏和肿瘤分别标注,生成数据集,然后将训练集送入基于金字塔池化和逐步特征增强模块的卷积神经网络中训练,得到训练模型,利用得到的训练模型对新的肾脏数据进行预测,得到肾脏肿瘤的分割掩模。本发明还提出一种基于三维卷积神经网络的CT造影图像肾脏肿瘤分割系统,本发明主要解决了肾脏肿瘤难图像分割的问题,通过本发明能够直接得到肾脏肿瘤的分割掩模。
-
公开(公告)号:CN108364632B
公开(公告)日:2021-09-10
申请号:CN201711407738.X
申请日:2017-12-22
Applicant: 东南大学
IPC: G10L13/02 , G06F40/289
Abstract: 本发明公开一种具备情感的中文文本人声合成方法,主要包括,(1)构建情感语料库;(2)基于波形拼接的带情感语音合成。建立语料库的主要步骤为:(11)分词并获取词语的词性;(12)语音切分,基于语音数据特征与文本语料获取对应分词的音频数据;(13)情感分析,基于文本分词与音频特征获取词语、短句和整句的情感特征值。基于波形拼接的带情感语音合成步骤为:(21)分词和情感分析,对待合成文本进行分词和情感分析,获取待合成文本内的词语词性、句型和情感特征;(32)选取最优语料,基于文本特征值匹配出最优语料集;(23)语音合成,波形拼接,从语料集中提取出词语音频序列集,将音频拼接合成输出最终语音。本发明合成输出具有情感特征的真人声语音。
-
公开(公告)号:CN110909207A
公开(公告)日:2020-03-24
申请号:CN201910845200.X
申请日:2019-09-08
Applicant: 东南大学
IPC: G06F16/74 , G06F16/783 , G06T5/40 , G06T7/90
Abstract: 本发明公开了一种包含手语的新闻类视频描述数据集构建方法,该方法的主要特征在于把新闻类视频构建成包含音频、视频、手语、语言描述的数据集;该方法利用色差直方图算法进行视频的自动分割,并使用ffmpeg完成视频信息的自动提取,最后构建图形用户界面并根据用户输入信息自动生成视频描述与视频信息json文件。本发明通过利用新闻视频数据与手语信息构建数据集,为视频描述网络的研究以及视频描述技术在残疾人士服务中的应用提供了支持。
-
公开(公告)号:CN110751664A
公开(公告)日:2020-02-04
申请号:CN201910931927.X
申请日:2019-09-29
Applicant: 东南大学
Abstract: 本发明公开了一种基于超体素匹配的脑组织分割方法,步骤如下:S1:所有的磁共振图像通过SLIC算法均生成超体素数据;S2:预处理所有的磁共振图像;S3:获取得到每个磁共振图像的超体素特征;S4:计算每个超体素和相邻超体素之间的特征梯度,并获取特征梯度之和;S5:确定模板图像中每个超体素对应的标签;S6:将每个磁共振图像的超体素特征、特征梯度之和串联为一个向量,根据向量计算待匹配磁共振图像和模板图像中每个超体素的相似度;S7:将待匹配磁共振图像和模板图像进行匹配,确定出每个待匹配磁共振图像的分割结果。本发明在匹配的过程中考虑超体素自身特征的同时,也能够考虑相邻超体素之间的关系,进而能够得到有效的匹配结果。
-
公开(公告)号:CN110599461A
公开(公告)日:2019-12-20
申请号:CN201910772126.3
申请日:2019-08-21
Applicant: 东南大学
Abstract: 本发明公开了一种基于子空间特征学习的丘脑功能分区方法。首先,使用弥散张量成像进行纤维追踪以获得活体大脑内部结构连接信息,使用精细皮层分区针对复杂非线性的丘脑皮层特征提取形成结构连接特征。然后,使用深度子空间网络以及增加的自表达特性学习特征的隐藏子空间映射,提取低维子空间特征。最后,对体素特征加以空间约束降低噪声的影响,更好地反映空间拓扑结构,丰富对空间信息的提取,构建亲和度矩阵使用归一化割方法获得功能分区。本发明方法能够降低噪声的影响,并且能够更好地反映体素空间的拓扑结构,丰富对空间信息的提取,可以高效地获得丘脑功能分区。
-
-
-
-
-
-
-
-
-