一种生物遗态结构SbC电池负极材料及其制备方法

    公开(公告)号:CN110697717A

    公开(公告)日:2020-01-17

    申请号:CN201910862744.7

    申请日:2019-09-12

    Abstract: 本发明涉及一种生物遗态结构SbC电池负极材料及其制备方法,通过对分心木进行酸液浸泡,得到保留了原材料结构的生物遗态碳,再通过对生物遗态碳复合方法制备出SbC复合材料,本发明具有以下有益效果:1、与碳复合提高了Sb的电子导电性;2、较大的孔道将会为K+的移动提供更为快速的扩散通道,而不同孔道之间所存在的胞状薄壁结构则可缩短K+在SbC复合材料内的传输距离,从而提高其离子导电性;3、众多的微小孔道也可让材料的比表面积得到提高,随着其比表面积的提高,其电池的比容量也会随之增加;4、通过KOH活化亦可控调节生物遗态碳中的孔道结构,从而可以进一步研究不同结构与性能之间存在的关系。

    一种内嵌锡基氧化物的热解碳电池负极材料及其制备方法

    公开(公告)号:CN110391408A

    公开(公告)日:2019-10-29

    申请号:CN201910670899.0

    申请日:2019-07-24

    Abstract: 一种内嵌锡基氧化物的热解碳电池负极材料及其制备方法,属于电池负极材料技术领域;该材料是由碳包覆的纳米锡基氧化物颗粒和热解碳复合而成,碳包覆的纳米锡基氧化物颗粒均匀内嵌在热解碳上;其颗粒直径为2~5nm;所述的碳包覆层厚度为1~5nm;所述的热解碳为三维多孔网状碳结构;制备方法:1)将NaCl:碳源:锡源:能与锡形成合金的可溶性盐混合,用去离子水溶解,磁力搅拌且完全冻实后,进行真空干燥;2)热处理后冷却至室温,制得粉末;3)将粉末洗涤、过滤和烘干;在酸中浸泡;4)烘干制得内嵌锡基氧化物的电池复合负极材料。本发明的电池复合负极材料在钾离子半电池测试中,在50~2000mA g-1的电流密度下,首次充电可逆容量为300~500mAh g-1,经过20~100次循环后,容量为150~290mAh g-1。

    一种纳米高熵合金电催化剂及其制备方法

    公开(公告)号:CN110280255A

    公开(公告)日:2019-09-27

    申请号:CN201910670641.0

    申请日:2019-07-24

    Abstract: 一种纳米高熵合金电催化剂及其制备方法,属于新材料制备技术领域;该材料是由三维多孔碳基底以及负载在三维多孔碳基底上的FeCoNiCrCu高熵合金纳米颗粒所组成;为FeNi合金结构单斜晶系,空间群Pm6;Fe,Co,Ni,Cr,Cu的摩尔比为1:1:1:1:1;制备方法:1)将模板剂-氯化钠、碳源、尿素,用去离子水溶解,加入掺杂源,磁力搅拌且完全冻实后,进行真空干燥;2)热处理后冷却至室温,制得粉末;3)将粉末洗涤、过滤和烘干,制得纳米高熵合金电催化剂;4)将纳米高熵合金电催化剂制作成工作电极,并进行电化学性能测试;本发明的纳米高熵合金纳米颗粒的直径为10~100nm,高熵合金电催化剂催化氧气析出反应的起始电位为1.50~1.63V,电流密度为10mA cm-2时的过电位为360~460mV,Tafel斜率为70~120mV dec-1。

    一种钠离子电池正极材料、其制备方法以及钠离子电池

    公开(公告)号:CN108565457A

    公开(公告)日:2018-09-21

    申请号:CN201810795134.5

    申请日:2018-07-19

    Abstract: 本发明提供了一种钠离子电池正极材料、其制备方法以及钠离子电池。本发明提供的钠离子电池正极材料的化学式为NaxNi0.167Co0.167Mn0.67O2,其中0.5≤x≤0.8,所述钠离子电池正极材料的形状为球形,其中锰和镍的浓度沿径向呈梯度分布。本发明提供的制备方法包括:1)将碱溶液与混合金属盐溶液混合,进行共沉淀反应,将锰盐溶液加入到共沉淀反应体系中,固液分离,得到的沉淀为混合金属碳酸盐;2)将混合金属碳酸盐在空气气氛下预烧,得到混合金属氧化物;3)将混合金属氧化物与钠源混合后煅烧,得到离子电池正极材料。本发明提供的钠离子电池正极材料具有优良的比容量和循环性能。

    一种内表面褶皱的中空介孔碳球的制备方法及应用

    公开(公告)号:CN115246638B

    公开(公告)日:2023-11-17

    申请号:CN202211008197.4

    申请日:2022-08-22

    Abstract: 本发明涉及一种内表面褶皱的中空介孔碳球的制备方法及应用,属于纳米材料和新能源材料领域。本发明采用树枝状纤维形纳米SiO2(DFNS)作为牺牲模板,经聚乙烯吡咯烷酮(PVP)进行改性后,再以酚醛树脂进行包覆,同时添加硅酸四乙酯(TEOS)引入介孔,退火后经氢氟酸(HF)刻蚀除去牺牲模板即可得到内表面褶皱的中空介孔碳球(IW‑MHCS)。本发明的内表面褶皱的中空介孔碳球(IW‑MHCS)用于钾离子电池负极材料时具有较高可逆比容量,以及优异的循环稳定性。外部光滑内部褶皱的巧妙设计避免电解液与碳材料大面积接触而发生过度的副反应,提高了活性材料的利用率。此外,以内表面褶皱的中空介孔碳球作为基体在金属负载以及掺杂改性等方面也有良好的应用前景,因此具有一定的研究价值。

    一种掺锂高熵氧化物电池负极材料及其制备和应用方法

    公开(公告)号:CN112537804B

    公开(公告)日:2023-01-31

    申请号:CN202011415573.2

    申请日:2020-12-07

    Abstract: 本发明公开了一种掺锂高熵氧化物电池负极材料及其制备和应用方法,属于锂离子电池材料领域,本发明通过高温固相法合成掺锂高熵氧化物作锂电负极材料,掺锂有效的提高了电极材料的首次放电容量,而熵稳定效应改善了材料的循环稳定性。这种良好的协同作用所产生的性能增益,效果明显优于传统的元素掺杂。电池负极材料在锂离子电池半电池测试中在100mAhg‑1的电流密度下,首次可逆比容量为400~720mAhg‑1,经过100次循环后,比容量为300~720mAhg‑1,表现出优异的电化学性能。本发明提供的制备方法工艺简单、可操作性强、适合工业化生产。

Patent Agency Ranking