一种短期风电功率的预测方法

    公开(公告)号:CN119719918A

    公开(公告)日:2025-03-28

    申请号:CN202510222190.X

    申请日:2025-02-27

    Applicant: 长安大学

    Abstract: 本发明公开了一种短期风电功率的预测方法,将第一历史风电数据集经多维变分模态分解模型得到本征模态函数;基于去冗模型的模型性能评估获取最优超参数组合;基于最优超参数组合进行本征模态函数的去冗,得到目标本征模态函数;基于第一历史风电数据集得到频域表示的第二历史风电数据集;从第二历史风电数据集获取自适应的前预设数量个周期及对应的风电数据;将对应的风电数据分解为季节性成分、趋势性成分和残差成分,并加权求和得到目标季节性成分、目标残差成分、目标趋势性成分;将目标季节性成分、目标残差成分、目标趋势性成分和目标本征模态函数融合并通过模型得到预测的短期风电功率。本发明提高了对短期风电功率预测的准确率。

    基于路面感知数据智能分类的加载车行驶纠偏方法和系统

    公开(公告)号:CN114898329A

    公开(公告)日:2022-08-12

    申请号:CN202210333395.1

    申请日:2022-03-31

    Applicant: 长安大学

    Abstract: 本发明公开了一种基于路面感知数据智能分类的加载车行驶纠偏方法和系统,所述方法包括:获取来自足尺路面上多个高频传感器的待分类数据;根据足尺路面不同高频传感器数据特征构建自适应阈值,对处于加载过程中的传感器数据进行提取;将获得的多个压力感知数据片段进行可视化转换,获得对应的待分类图像数据;构建DCNN6卷积神经网络并对卷积神经网络进行训练;利用经训练的卷积神经网络模型获得待分类图像数据的分类结果;利用所述分类结果对车辆的驾驶轨迹进行提示。本发明可以有效解决足尺环道中的动态高频传感器数据自动分类问题,为全路域受力分析和把握车辙演变规律提供有力的数据支撑,且分类速度快、精度高,节省人力物力。

Patent Agency Ranking