-
公开(公告)号:CN107145878A
公开(公告)日:2017-09-08
申请号:CN201710403573.2
申请日:2017-06-01
Applicant: 重庆邮电大学
CPC classification number: G06K9/00335 , G06K9/00892 , G06K9/6256 , G06K9/6267 , G06K2009/00939
Abstract: 本发明请求保护一种基于深度学习的老人异常行为检测方法,属于深度学习领域。本发明通过多种传感器采集老人的体征信息、位置信息、图像信息,联合检测联合判断老人的异常行为,降低误判概率。首先根据多种传感器数据进行信号预处理,将处理的数据输入已训练好的BP神经网络获得老人身体状况,然后根据原始图像,对图像进行预处理后送入3D卷积神经网络提取特征向量,通过Softmax分类器识别老人的多种行为,再综合老人位置信息与驻留时长,根据模糊逻辑推理判断老人行为是否异常。本发明采用联合检测方法,通过深度学习,模糊逻辑推理对老人异常行为进行联合判断,降低了误判率,提高了检测的准确性。