软件定义网络的网络安全性测试方法

    公开(公告)号:CN105187403A

    公开(公告)日:2015-12-23

    申请号:CN201510498610.3

    申请日:2015-08-13

    CPC classification number: H04L63/1408 H04L63/1433

    Abstract: 本发明提出一种面向软件定义网络的网络安全性测试方法,包括针对目标软件定义网络的安全性测试框架、安全性测试策略、分类安全性测试方法、项目安全性测试方法和安全性测试步骤。其中,测试框架包括将目标软件定义网络划分为数据、控制、应用和管理四个网络平面,分别对各个网络平面的各个网元、链路以及各个网络平面之间的接口展开安全性测试;测试策略包括对安全性测试框架中的各个单元进行测试的选择和流程编制方法;分类安全性测试方法依据各个单元的类别特点开展不同类型的安全性测试;项目安全性测试方法实现具体的针对目标网元、链路或接口的安全性测试,测试流程定义了完整的针对目标软件定义网络的安全性测试过程和步骤。

    一种基于深度神经网络的声学特征动态提取方法

    公开(公告)号:CN119274543A

    公开(公告)日:2025-01-07

    申请号:CN202411113422.X

    申请日:2024-08-14

    Abstract: 本发明涉及声学动态提取技术领域,具体地说,涉及一种基于深度神经网络的声学特征动态提取方法。其包括以下步骤:S1、对音频数据进行预处理,将音频数据分帧;S2、将分帧后的音频信号进行傅里叶变换,使其从时域信号转换到频域信号并得到频谱图;S3、对频谱图进行预处理,将预处理后频谱图作为深度神经网络的输入;S4、在深度神经网络中使用一阶和二阶差分参数实现动态特征提取,再将一阶和二阶差分参数组合成特征向量输入深度神经网络;S5、将提取的特征序列通过序列标注的方法输出音频信号中的时间变化信息;深度神经网络不仅能够自动提取声学特征,还能捕捉这些特征在时间序列上的动态变化,有利于对声学场景的理解和分类准确。

    一种特定场景语音内容识别优化方法

    公开(公告)号:CN117095673A

    公开(公告)日:2023-11-21

    申请号:CN202310830037.6

    申请日:2023-07-07

    Abstract: 本发明涉及语音识别领域,尤其为一种特定场景语音内容识别优化方法,包括如下步骤:包括如下步骤:S1:使用网络爬虫技术对网络中特定场景的语音进行爬取,获得初始语音数据;S2:提取初始语音数据并对初始语音数据进行数据预处理获得预处理数据;S3:通过卷积神经网络训练实用模型,对预处理数据进行语音识别并生成初始文本;S4:使用文本规范算法对初始文本进行文本润色保证输出最终文本的正确性。本发明通过对获取的语音进行预处理起到数据增强的作用保证了数据不失真,在获取到不失真的数据后对其进行特征提取确保了工作速度,对提取出的初始文本进行文本规范算法用常见的文本代替初始文本中出现的非人类语言,保证最后出现的文本不会出现错误。

    基于移动用户信令数据的跨城通勤用户识别方法及装置

    公开(公告)号:CN115915038A

    公开(公告)日:2023-04-04

    申请号:CN202110805859.X

    申请日:2021-07-16

    Abstract: 本发明公开了一种基于移动用户信令数据的跨城通勤用户识别方法及装置,包括:基于每一周期的白天时间段与夜间时间段,利用目标区域的移动用户信令数据获取该周期日工作用户与该周期日居住用户;依据该周期日工作用户的该周期夜间信令数据与该周期日居住用户的该周期白天信令数据,分别得到该周期夜间信令消失用户与该周期白天信令消失用户;利用全部移动用户在设定时间段内成为该周期夜间信令消失用户或该周期白天信令消失用户的次数,得到跨城通勤用户识别结果。本发明基于原始信令数据挖掘跨城通勤用户,采用Spark计算框架进行分析处理,具有高可靠性和高效率,可用于区域人口监管。

    一种基于深度强化学习模型的数据清洗方法及装置

    公开(公告)号:CN113326689A

    公开(公告)日:2021-08-31

    申请号:CN202010128327.2

    申请日:2020-02-28

    Abstract: 本发明属于数据通信和数据处理技术领域,具体涉及一种基于深度强化学习模型的数据清洗方法,该方法包括:获取待清洗的带标签的数据集;采用预筛选算法,删除待清洗的带标签的数据集中的无内容数据、不在标签集内的标签数据和标签矛盾的数据,获得待分类的数据集;将待分类的数据集输入至预先训练的深度强化学习模型中,获得不同类别的延迟奖励;再根据获得的不同类别的延迟奖励,依据预先训练的深度强化学习模型中的动作集合,丢弃掉有偏数据,保留有效数据,并更新状态列表S,最大化每一类别的延迟奖励值,将每一类别的最大延迟奖励值对应的带标签的训练数据集作为清洗干净的带标签的训练数据集,从而完成数据清洗。

Patent Agency Ranking