燃料电池使用寿命和剩余寿命的倒数预测方法及装置

    公开(公告)号:CN111413624A

    公开(公告)日:2020-07-14

    申请号:CN202010285041.5

    申请日:2020-04-13

    Applicant: 清华大学

    Abstract: 本发明公开了一种燃料电池使用寿命和剩余寿命的倒数预测方法及装置,方法包括:对待测燃料电池进行活化,获取活化后待测燃料电池的初始极化曲线中定电压下的电流为第一电流;根据初始极化曲线中定电压下电流或者功率的衰减比确定待测燃料电池的寿命终结点;将待测燃料电池运行预设时间,获取待测燃料电池的当前极化曲线中同一定电压下的电流为第二电流;根据第一电流和第二电流以及燃料电池老化过程中定电压下的电流和时间之间的倒数特性公式预测待测燃料电池的使用寿命,根据待测燃料电池的使用寿命和待测燃料电池的寿命终结点预测待测燃料电池的剩余寿命。该方法操作流程简单,高效,能够大幅缩短燃料电池寿命预测的检测时间。

    燃料电池组合电堆系统水故障的控制方法及装置

    公开(公告)号:CN108258268B

    公开(公告)日:2020-05-08

    申请号:CN201810059712.9

    申请日:2018-01-22

    Applicant: 清华大学

    Abstract: 本发明公开了一种燃料电池组合电堆系统水故障的控制方法及装置,燃料电池组合电堆系统的第一电堆和第二电堆并联或串联供能,且第一电堆和第二电堆的冷却水支路上分别设置有流量调节阀,其中,方法包括:获取电堆系统在每个正常工况的氢气压力降基准值,以得到调控控制线;采集当前氢气侧压力降,并在当前氢气侧压力降高于当前正常工况对应的调控控制线时,根据第一电堆和第二电堆的电压或电流判定故障电堆;减小故障电堆流量调节阀的开度,并且增加另个电堆的流量调节阀的开度。该方法可有效地对燃料电池水淹故障提出预警,可确定有水淹趋势的电堆并对该堆采取相应措施规避故障。

    规避金属空气燃料电池停机腐蚀的系统和方法

    公开(公告)号:CN109167125A

    公开(公告)日:2019-01-08

    申请号:CN201811009500.6

    申请日:2018-08-31

    Applicant: 清华大学

    Abstract: 本发明公开了规避金属空气燃料电池停机腐蚀的系统和方法,系统包括:电池腔,电池腔内设有间隔布置的空气正极和金属负极,电池腔具有第一电解液入口、第一保护液入口、第一电解液出口和第一保护液出口;电解液储存装置,电解液储存装置具有第二电解液入口和第二电解液出口,第二电解液入口与第一电解液出口相连,第二电解液出口与第一电解液入口相连;保护液储存装置,保护液储存装置具有第二保护液入口和第二保护液出口,第二保护液入口与第一保护液出口相连,第二保护液出口与第一保护液入口相连。该系统避免了金属空气燃料电池在停机状态下金属负极的自腐蚀,同时可自由切换电池的工作-停机状态,显著提高了金属空气燃料电池的使用寿命。

    氢气压差检测方法、检测装置及氢气压差传感器

    公开(公告)号:CN106941184A

    公开(公告)日:2017-07-11

    申请号:CN201710139021.5

    申请日:2017-03-09

    Applicant: 清华大学

    CPC classification number: H01M8/04432 G01L13/06 H01M8/04992

    Abstract: 本发明公开了一种氢气压差检测方法、检测装置及氢气压差传感器,其中,方法包括:采集氢气压力、电池堆温度和增湿温度;根据增湿温度获取对应于增湿温度的第一饱和压力,并且根据电池堆温度获取对应于电池堆温度的第二饱和压力;根据第一饱和压力和第二饱和压力得到进气相对湿度;根据燃料电池的阳极和阴极之间的电势差获取输出电压;根据氢气压力、进气相对湿度、第二饱和压力和电池堆温度得到氢气压差。该方法可以根据燃料电池的阳极和阴极之间的电势差确定氢气压差,降低燃料电池系统的体积和成本,提高燃料电池系统的实用性和适用性,简单易实现。

    金属空气电池催化剂、空气电极及制备方法

    公开(公告)号:CN110676470B

    公开(公告)日:2021-05-25

    申请号:CN201910832855.3

    申请日:2019-09-04

    Applicant: 清华大学

    Abstract: 本发明公开了一种金属空气电池催化剂、空气电极及制备方法,包括富氧空缺钴氧化物、碳包覆的富氧空缺钴氧化物及载有所述催化剂空气电极的制备方法和应用。本发明实施例通过水热反应在集流体上直接生长催化剂,可以将催化剂与集流体稳固连接,省去了粘接剂的使用,降低空气电极内部电阻,减缓金属空气电池工作过程中的催化剂流失。相比于传统金属空气电池钴氧化物催化剂,本发明实施例中富氧空缺及碳包覆的富氧空缺钴氧化物具有较高的氧还原活性,采用所述催化剂制备的金属空气电池具有更高的峰值功率密度和充放电循环寿命。

    基于类极化特性的燃料电池使用寿命的预测方法及装置

    公开(公告)号:CN111413626B

    公开(公告)日:2021-04-23

    申请号:CN202010303823.7

    申请日:2020-04-17

    Applicant: 清华大学

    Abstract: 本发明公开了一种基于类极化特性的燃料电池使用寿命的预测方法及装置,其中,该方法包括:对待测燃料电池进行活化,获取初始状态的极化曲线,并根据定电流下电压衰减的百分比确定寿命终结点;使待测燃料电池在预设时间内运行,获取燃料电池当前的极化曲线;根据类极化特性的燃料电池寿命预测公式对初始状态的极化曲线、燃料电池当前的极化曲线和寿命终结点进行处理,获取燃料电池的使用寿命和剩余寿命。该方法大幅简化了燃料电池寿命预测的步骤,节省了燃料电池寿命预测的时间。

    燃料电池堆内部漏气故障诊断及定位方法和装置

    公开(公告)号:CN110504471B

    公开(公告)日:2021-03-23

    申请号:CN201910789924.7

    申请日:2019-08-26

    Applicant: 清华大学

    Abstract: 本发明公开了一种燃料电池堆内部漏气故障诊断及定位方法和装置,其中,该方法包括:向燃料电池堆阳极供给氢气,向燃料电池堆阴极正向供应惰性气体,通过电压巡检的方式记录燃料电池堆的每个燃料电池单片的浓差电势作为第一浓差电势组;向燃料电池堆阳极供给氢气,向燃料电池堆阴极反向供应惰性气体,通过电压巡检的方式记录燃料电池堆的每片燃料电池单片的浓差电势作为第二浓差电势组;将第一浓差电势组与第二浓差电势组进行对比,根据对比结果判断燃料电池堆内部漏气的故障原因和故障位置。该方法可以在不拆燃料电池堆的情况下快速判断燃料电池堆内部漏气故障原因并精确定位故障位置,效率高,可操作性强,且可规避对于燃料电池堆的进一步损坏。

    燃料电池使用寿命和剩余寿命的对数预测方法及装置

    公开(公告)号:CN111426954A

    公开(公告)日:2020-07-17

    申请号:CN202010285680.1

    申请日:2020-04-13

    Applicant: 清华大学

    Abstract: 本发明公开了一种燃料电池使用寿命和剩余寿命的对数预测方法及装置,该方法包括:对待测燃料电池进行活化,获取活化后待测燃料电池的初始极化曲线中定电压下的电流为第一电流;根据初始极化曲线中定电压下电流或者功率的衰减比确定待测燃料电池的寿命终结点;将待测燃料电池运行预设时间,获取待测燃料电池的当前极化曲线中同一定电压下的电流为第二电流;根据第一电流和第二电流以及燃料电池老化过程中定电压下的电流和时间之间的对数特性公式预测待测燃料电池的使用寿命,根据待测燃料电池的使用寿命和待测燃料电池的寿命终结点预测待测燃料电池的剩余寿命。该方法操作流程简单,高效,能够大幅缩短燃料电池寿命预测的检测时间。

    金属空气电池催化剂、空气电极及制备方法

    公开(公告)号:CN110676470A

    公开(公告)日:2020-01-10

    申请号:CN201910832855.3

    申请日:2019-09-04

    Applicant: 清华大学

    Abstract: 本发明公开了一种金属空气电池催化剂、空气电极及制备方法,包括富氧空缺钴氧化物、碳包覆的富氧空缺钴氧化物及载有所述催化剂空气电极的制备方法和应用。本发明实施例通过水热反应在集流体上直接生长催化剂,可以将催化剂与集流体稳固连接,省去了粘接剂的使用,降低空气电极内部电阻,减缓金属空气电池工作过程中的催化剂流失。相比于传统金属空气电池钴氧化物催化剂,本发明实施例中富氧空缺及碳包覆的富氧空缺钴氧化物具有较高的氧还原活性,采用所述催化剂制备的金属空气电池具有更高的峰值功率密度和充放电循环寿命。

    可充电铝-空气电池及其制备方法

    公开(公告)号:CN110534847A

    公开(公告)日:2019-12-03

    申请号:CN201910916482.8

    申请日:2019-09-26

    Applicant: 清华大学

    Abstract: 本发明公开了可充电铝-空气电池及其制备方法。该可充电铝-空气电池包括:负极、正极以及电解液。其中,所述负极包括气凝胶载体和负载于所述气凝胶载体上的液态金属纳米体颗粒;所述正极包括气凝胶载体和负载于所述气凝胶载体上的催化剂;所述电解液包括电解质盐和氧化铝。该可充电铝-空气电池的负极可在常温下大规模电沉积铝,从而实现常温下的可逆充电,且具有更高的能量密度,克服了现有铝-空气电池存在的自腐蚀、钝化与接枝效应的等问题,安全性能高,循环寿命长。

Patent Agency Ranking