客服场景下用户问句的回复方法、装置及设备

    公开(公告)号:CN110765253B

    公开(公告)日:2023-03-31

    申请号:CN201911008117.3

    申请日:2019-10-22

    Abstract: 本说明书实施例提供一种客服场景下用户问句的回复方法、装置及设备,在回复方法中,接收第一租户下的当前用户问句。针对当前用户问句,获取当前用户问句的上下文信息。基于第一租户的租户标识、当前用户问句和上下文信息,生成新用户问句。基于新用户问句,从与第一租户对应的知识库中召回预定数目个答案。将预定数目个答案中的各答案以及新用户问句输入预测模型,以预测各答案与新用户问句的匹配分数。该预测模型包括多个租户共享的底层网络部分和多个租户分别对应的多个上层网络部分,多个上层网络部分具有相同的网络结构,以及针对不同租户训练得到的不同网络参数。基于匹配分数,从各答案中确定出目标答案并返回。

    通过计算机训练预测模型的方法及装置

    公开(公告)号:CN111191722B

    公开(公告)日:2022-08-09

    申请号:CN201911395996.X

    申请日:2019-12-30

    Abstract: 本说明书实施例提供一种通过计算机训练预测模型的方法和装置,可以将较前周期状态下的预测模型,作为较后周期的预测模型的老师模型,仅需要老师模型的历史概率分布,和样本标签一起为模型参数的调整指引方向。由于每个训练周期中,各个状态下的输入样本都随机抽取,如果当前训练周期当前状态下输入的当前样本有多个,则这多个样本可以携带有历史训练周期中不同状态下的模型参数信息,相当于同时向多个老师模型学习,加快学习效率,提升模型学习效果。同时,存储的数据仅为各个样本在相关历史周期的概率分布,以较低的计算成本和存储成本,达到同时向多个老师模型学习的效果,可以提高模型训练的有效性。

    一种训练神经网络的方法及系统

    公开(公告)号:CN111079574B

    公开(公告)日:2022-08-02

    申请号:CN201911202734.7

    申请日:2019-11-29

    Abstract: 本说明书实施例公开了一种训练神经网络的方法及系统。所述方法包括:将训练数据输入N层神经网络,第K层神经网络输出第一概率分布,第N层神经网络输出第二概率分布;其中,N大于K,N和K为大于0的整数;根据所述第一概率分布与所述第二概率分布,确定第一反馈信号;根据所述第一反馈信号调节1~K层神经网络的参数,使得所述1~K层神经网络学习所述第N层神经网络输出的第二概率分布,得到训练好的K层神经网络。

    一种智能客户服务机器人训练数据的生成方法和系统

    公开(公告)号:CN111538822A

    公开(公告)日:2020-08-14

    申请号:CN202010330706.X

    申请日:2020-04-24

    Abstract: 本说明书实施例提供一种智能客户服务机器人训练数据的生成方法和系统。该方法包括获取若干个样本数据,所述样本数据包括若干个具有顺序的样本片段,所述样本片段来自智能客户服务机器人或用户;获取与所述样本数据相关的多个候选资料片段;在所述样本数据中获取第一片段,所述第一片段与所述候选资料片段相似度满足第一预设条件,且来自所述智能客户服务机器人;基于所述第一片段,在所述样本数据中获取第二片段,所述第二片段与所述第一片段关联度满足第二预设条件,且来自所述用户;基于所述第二片段和所述候选资料片段生成训练数据。

    基于用户问句生成标准问题的方法和装置

    公开(公告)号:CN111221945B

    公开(公告)日:2020-08-04

    申请号:CN202010329631.3

    申请日:2020-04-24

    Abstract: 本说明书实施例提供一种基于用户问句生成标准问题的方法和装置,方法包括:获取目标用户与人工客服的第一多轮对话,所述第一多轮对话包括第一数目轮的用户问句和客服答案;提取所述第一多轮对话中第一数目轮的用户问句;对所述第一数目轮的用户问句至少进行拼接处理,得到第一输入文本;将所述第一输入文本输入预先训练的文本生成模型,得到所述第一多轮对话对应的标准问题。能够提高标准问题的生产效率,相应提升标准问题的覆盖率。

    神经网络模型的训练方法及装置

    公开(公告)号:CN111368997A

    公开(公告)日:2020-07-03

    申请号:CN202010143596.6

    申请日:2020-03-04

    Abstract: 本说明书实施例提供一种神经网络模型的训练方法及装置,在训练方法中,基于在上一周期训练后的神经网络模型,分别确定在当前周期待训练的第一模型,以及用于辅助训练第一模型的第二模型。从样本集合中选取当前标定样本,并基于其执行以下步骤:将当前标定样本输入第一模型,得到第一概率分布。基于第一概率分布,确定当前标定样本的预测标签。将当前标定样本输入第二模型,得到第二概率分布。基于标定标签和预测标签,确定第一预测损失。基于第一概率分布和第二概率分布,确定第二预测损失。结合第一预测损失和第二预测损失,调整第一模型的参数。在全部样本选取完之后,将最后一次调整参数后的第一模型作为在当前周期训练后的神经网络模型。

    神经网络模型的融合训练方法及装置

    公开(公告)号:CN111291886B

    公开(公告)日:2022-02-18

    申请号:CN202010131424.7

    申请日:2020-02-28

    Abstract: 本说明书实施例提供一种神经网络模型的融合训练方法及装置。通过神经网络模型的模型训练过程包括若干训练周期,每个训练周期对应于使用训练样本集中所有样本数据进行模型训练的过程,神经网络模型用于对输入的业务数据进行业务预测。在当前的第一训练周期中,当第一训练周期不是第一个训练周期时,基于第一训练周期之前的训练周期训练结束时得到的神经网络模型对第一样本数据的预测数据的累积,而得到的第一目标预测数据,即根据第一目标预测数据对待训练神经网络模型的训练过程进行调整,更新待训练神经网络模型。

    一种确定文本标签的方法和系统

    公开(公告)号:CN111324738B

    公开(公告)日:2020-08-28

    申请号:CN202010409780.0

    申请日:2020-05-15

    Abstract: 本说明书的实施例公开了一种确定文本标签的方法和系统,所述方法包括:获取文本,所述文本对应至少一个候选标签;基于文本和至少一个候选标签中的一个组成文本标签对;将文本标签对输入判断模型,所述判断模型包含至少一个交互模型,判断模型基于交互模型输出的文本标签对中候选标签的交互编码,确定候选标签是否为文本的真实标签;其中,所述交互模型包含第一编码模型,所述第一编码模型基于第一多头注意力机制,得到候选标签的交互编码;其中:文本的编码作为第一多头注意力机制中计算K和V的输入,候选标签的编码作为第一多头注意力机制中计算Q的输入。

Patent Agency Ranking