-
公开(公告)号:CN103368667B
公开(公告)日:2015-09-09
申请号:CN201210516105.3
申请日:2012-12-06
Applicant: 国家无线电监测中心检测中心 , 天维讯达无线电设备检测(北京)有限责任公司
IPC: H04B17/00
Abstract: 一种基于PXI总线构架的射频测试单元,主要包括一个嵌入式图形控制处理器S3C2440、PXI总线、6级同轴开关、第一高通滤波器、第二高通滤波器、低通滤波器、第一陷波器、第二陷波器、第三陷波器、第一放大器和第二放大器组成,该PXI总线构架的射频测试单元克服了在射频终端设备进行测试过程中,不同测试项目需要不同信号处理路径的问题,可将所有核准辐射骚扰及辐射杂散指标的测试链路进行系统集成,避免了手动测试带来的误差,提高了测试准确度和测试效率。
-
公开(公告)号:CN103051394B
公开(公告)日:2015-08-12
申请号:CN201210516124.6
申请日:2012-12-06
Applicant: 国家无线电监测中心检测中心 , 天维讯达无线电设备检测(北京)有限责任公司
IPC: H04B17/00
Abstract: 一种图形控制射频切换矩阵系统,主要包括一个嵌入式图形控制处理器S3C2440、CAN总线、6级同轴开关、第一高通滤波器、第二高通滤波器、低通滤波器、第一陷波器、第二陷波器、第三陷波器、第一放大器和第二放大器组成,该图形控制射频切换矩阵系统克服了在射频终端设备进行测试过程中,不同测试项目需要不同信号处理路径的问题,可将所有核准辐射骚扰及辐射杂散指标的测试链路进行系统集成,避免了手动测试带来的误差,提高了测试准确度和测试效率。
-
公开(公告)号:CN104515901A
公开(公告)日:2015-04-15
申请号:CN201410768796.5
申请日:2014-12-11
Applicant: 国家无线电监测中心检测中心 , 天维讯达无线电设备检测(北京)有限责任公司
IPC: G01R21/00
Abstract: 本发明公开了一种射频功率探测装置及方法。该射频功率探测装置包括:检波模块,用于将射频信号转换成直流信号;模数转换模块,用于将检波模块转换成的直流信号转换成数字信号;通讯模块,用于将模数转换模块转换成的数字信号传输到上位机,以由上位机根据所述数字信号计算出射频信号功率。将射频信号转换成直流信号;将所述直流信号转换成数字信号;将所述数字信号输出到上位机,由上位机计算出射频信号功率。本发明的射频功率探测装置体积小,成本低。并且,通过上位机处理大量数据,提高了处理速度,便于扩展多模块测试,缩短了开发周期,进一步降低了成本。
-
公开(公告)号:CN103781086A
公开(公告)日:2014-05-07
申请号:CN201310676143.X
申请日:2013-12-11
Applicant: 国家无线电监测中心检测中心 , 北京理工大学 , 天维讯达无线电设备检测(北京)有限责任公司
Abstract: 本发明实施例提供了一种基于TTCN-3对TETRA终端进行测试的方法和装置。该方法主要包括:在TTCN-3测试系统中的TRI中设置端口过滤单元,在端口过滤单元中存储各种类型的TETRA终端所分别支持的AT指令集。端口过滤单元对TETRA终端和TTCN-3测试系统之间交互的AT指令进行监听,根据发送或者接收AT指令的TETRA终端的类型和存储的各种类型的TETRA终端所分别支持的AT指令集,对AT指令进行修改。本发明实施例使TTCN-3测试系统能够通过标准AT指令与不同TETRA终端进行交互,而不必考虑不同制造商生产的TETRA终端所支持AT指令集的差异,降低了TTCN-3测试系统对TETRA终端进行测试的复杂度和难度。
-
公开(公告)号:CN103067097A
公开(公告)日:2013-04-24
申请号:CN201210501181.7
申请日:2012-11-29
Applicant: 国家无线电监测中心检测中心 , 天维讯达无线电设备检测(北京)有限责任公司
IPC: H04B17/00
Abstract: 本发明实施例提供了一种对无线通信终端进行型号核准辐射骚扰测试的方法和装置。该方法主要包括:根据无线通信终端的型号核准辐射骚扰测试的测试规范要求,通过同轴开关从滤波器组中选择接通一个滤波器,和/或;通过同轴开关从陷波器组中选择接通一个陷波器;和/或,通过同轴开关从放大器组中选择接通一个放大器,被测信号依次经过滤波器组、陷波器组和放大器组。本发明实施例克服了在无线通信终端进行型号核准辐射骚扰测试过程中,针对不同测试规范需要人工分别搭建不同测试链路的问题,实现了无线通信终端的所有型号核准辐射骚扰及辐射杂散指标的测试链路的系统集成。
-
公开(公告)号:CN102546056A
公开(公告)日:2012-07-04
申请号:CN201110452998.5
申请日:2011-12-30
Applicant: 国家无线电监测中心检测中心 , 天维讯达无线电设备检测(北京)有限责任公司
Abstract: 本发明涉及一种手机的全向辐射功率同步测量方法,属于无线通信产品的射频测试技术领域。所述方法包括如下步骤:校准步骤:根据设置在过模谐振腔内发射天线(4)发射的信号的功率Pin和所测得的接收天线接收发射天线(4)发射的信号的功率计算出校准换算因子Fj;测量步骤:根据设置在过模谐振腔内的接收天线接收待测手机发射的信号的功率及校准换算因子Fj求得待测手机的全向辐射功率TRP,其中,测量时,发射天线(4)从屏蔽室内移出,待测手机设置在发射天线(4)的位置处。本发明提出的测试方法测试精度高,操作方便。
-
公开(公告)号:CN105762936B
公开(公告)日:2018-03-23
申请号:CN201610227173.6
申请日:2016-04-13
Applicant: 深圳无线电检测技术研究院 , 天维讯达无线电设备检测(北京)有限责任公司 , 国家无线电监测中心检测中心 , 国网上海市电力公司
IPC: H02J13/00
Abstract: 本申请公开了一种电能质量数据采集传输方法及系统,所述方法包括预先将信号强度值按从小到大至少划分成三个等级:第一信号强度区间、第二信号强度区间和第三信号强度区间;传输前先获取当前RSSI值,换算成信号强度值;判断此信号强度值位于哪个信号强度区间;根据判断结果,将电能质量数据根据传输协议进行分包传输:当判断结果为信号强度值位于第一信号强度区间时,将每个数据包的大小设定为N11个字节进行传输;当判断结果为信号强度值位于第二信号强度区间时,将每个数据包的大小设定为N21个字节进行传输;当判断结果为信号强度值位于第三信号强度区间时,将每个数据包的大小设定为N31个字节进行传输,其中N11、N21、和N31为正整数,且N11<N21<N31。
-
公开(公告)号:CN103781086B
公开(公告)日:2017-05-03
申请号:CN201310676143.X
申请日:2013-12-11
Applicant: 国家无线电监测中心检测中心 , 北京理工大学 , 天维讯达无线电设备检测(北京)有限责任公司
Abstract: 本发明实施例提供了一种基于TTCN‑3对TETRA终端进行测试的方法和装置。该方法主要包括:在TTCN‑3测试系统中的TRI中设置端口过滤单元,在端口过滤单元中存储各种类型的TETRA终端所分别支持的AT指令集。端口过滤单元对TETRA终端和TTCN‑3测试系统之间交互的AT指令进行监听,根据发送或者接收AT指令的TETRA终端的类型和存储的各种类型的TETRA终端所分别支持的AT指令集,对AT指令进行修改。本发明实施例使TTCN‑3测试系统能够通过标准AT指令与不同TETRA终端进行交互,而不必考虑不同制造商生产的TETRA终端所支持AT指令集的差异,降低了TTCN‑3测试系统对TETRA终端进行测试的复杂度和难度。
-
公开(公告)号:CN105894772A
公开(公告)日:2016-08-24
申请号:CN201610226900.7
申请日:2016-04-13
Applicant: 深圳无线电检测技术研究院 , 天维讯达无线电设备检测(北京)有限责任公司 , 国家无线电监测中心检测中心
IPC: G08C17/02
CPC classification number: G08C17/02
Abstract: 本申请公开了一种异构无线网络的电能质量数据监测管理系统及方法,所述系统包括用于提供多频段无线通信以采集电能质量数据的频段提供单元;用于接收频段选择指令从所述多频段中选择一频段为工作频段的频段选择单元;用于提供多种通信方式以上传所述采集到的电能质量数据的通信方式提供单元;用于接收通信方式选择指令从所述多种通信方式中选择一通信方式为工作通信方式的通信方式提供单元。本申请采用一种基于异构无线网络的电能质量数据监测管理系统及方法,解决了传统的电能质量数据的监测和管理采用有线方式建设成本高,且安全和可靠性低及采用单一无线方式实用性不强的缺点。
-
公开(公告)号:CN105096562A
公开(公告)日:2015-11-25
申请号:CN201510444658.6
申请日:2015-07-24
Applicant: 深圳无线电检测技术研究院 , 天维讯达无线电设备检测(北京)有限责任公司 , 国家无线电监测中心检测中心
IPC: G08C17/02
Abstract: 一种用于电能质量监测网的移动监测系统及相关装置,该系统包括设置在变电站端的变电站无线通信装置、设置在移动监测平台的移动监测平台通信装置和设置在监测主站的远程通信装置。一方面,解决了传统有线方式受地形影响无法搭建有线通信系统、有线通信系统施工难、建设成本高的问题;另一方面,变电站和移动监测平台之间、移动监测平台和监测主站之间采用独立的通信体制,且采用多种通信方式进行数据的传输,可根据数据的传输效率进行自适应切换选择,优先选择通信效率高的方式,解决了使用单一网络而导致的速率低和实时性不强的问题。
-
-
-
-
-
-
-
-
-