-
公开(公告)号:CN112990273A
公开(公告)日:2021-06-18
申请号:CN202110190037.5
申请日:2021-02-18
Applicant: 中国科学院自动化研究所
IPC: G06K9/62 , G06K9/00 , G06N3/02 , G06N3/08 , G06F16/951
Abstract: 本发明属于图像识别领域,具体涉及了一种面向压缩域的视频敏感人物识别方法、系统、设备,旨在解决现有的敏感人物识别方法低效和浪费资源的问题。本发明包括:对待检测视频部分解码获取压缩域多模态信息,将压缩域多模态信息进行检测和校准,将校准后的压缩域人脸多模态信息通过训练好的多模态人脸识别网络获取多模态人脸特征,将多模态人脸特征与敏感人脸特征库进行比对,确认是否存在敏感人脸。其中,压缩域人脸多模态信息通过I分支、MV分支和Res分支分别提取不同的特征再进行多模态特征融合得到唯一的多模态人脸特征。本发明只需要进行部分解码就能完成特征提取,解决了现有技术低效和资源浪费的问题,同时保有较高的识别精度。
-
公开(公告)号:CN112950576A
公开(公告)日:2021-06-11
申请号:CN202110220740.6
申请日:2021-02-26
Applicant: 中国科学院自动化研究所 , 人民中科(济南)智能技术有限公司
Abstract: 本发明涉及一种基于深度学习的输电线路缺陷智能识别方法及系统,所述智能识别方法包括:获取待测输电线路图像;根据所述输电线路图像,基于多分辨率融合金字塔,确定粗粒度多分辨率层特征信息;根据所述粗粒度多分辨率层特征信息,基于细粒度交互金字塔,得到细粒度多分辨率层特征信息;根据所述细粒度多分辨率层特征信息,基于特征增强金字塔,得到增强特征图像;根据增强特征图像,确定待测输电线路的缺陷类别及缺陷位置,可提高对多尺度目标的检测精度。
-
公开(公告)号:CN110135562B
公开(公告)日:2020-12-01
申请号:CN201910360632.1
申请日:2019-04-30
Applicant: 中国科学院自动化研究所 , 国网通用航空有限公司
Abstract: 本发明属于计算机视觉及机器学习领域,具体涉及了一种基于特征空间变化的蒸馏学习方法、系统、装置,旨在解决学生网络无法学习教师网络全局知识的问题。本发明方法包括:按照蒸馏学习教师网络的参数结构构建对应的学生网络;分别选取预设的网络层,计算每一层的特征空间表示以及特定两个层间的跨层特征空间变化矩阵;计算基于特征空间变化的损失函数,根据真实标签计算分类损失函数;通过两个损失函数的加权将教师网络的特征空间变化作为知识迁移到学生网络中。本发明将教师网络层与层之间的特征空间变化刻画为一种新的知识,从而,使得学生网络在学习层与层之间的特征空间变化时,就学习到整个教师网络全局的知识。
-
公开(公告)号:CN111612143A
公开(公告)日:2020-09-01
申请号:CN202010440475.8
申请日:2020-05-22
Applicant: 中国科学院自动化研究所
Abstract: 本发明涉及一种深度卷积神经网络的压缩方法及系统,所述压缩方法包括:根据滤波器重要性选择方式和/或模型压缩率,确定待压缩深度卷积神经网络中不重要的滤波器;对不重要的滤波器施加渐进式稀疏约束,作为正则项加入到网络训练的损失函数中,得到优化损失函数;根据正则项,采用阈值迭代算法及反向传播算法联合求解,得到待压缩深度卷积神经网络的更新参数;基于所述优化损失函数及更新参数,获得具有滤波器稀疏形式的卷积神经网络模型;利用结构化剪枝算法,对所述具有滤波器稀疏形式的卷积神经网络模型进行剪枝,得到网络精度较高的压缩后的卷积神经网络模型。
-
公开(公告)号:CN110222611A
公开(公告)日:2019-09-10
申请号:CN201910446596.0
申请日:2019-05-27
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于计算机视觉及深度学习领域,具体涉及了一种基于图卷积网络的人体骨架行为识别方法、系统、装置,旨在解决基于图卷积神经网络的人体骨架行为识别结果精度不高的问题。本发明方法包括:获取骨架视频帧并归一化;构建每一帧图对应的人体关节自然连接图;学习非自然连接边,获得人体关节连接图;为人体关节连接图各条边分配权重值;进行图卷积操作,获得骨架序列的空间信息;在时间维度上进行卷积操作,获得骨架序列的行为类别。本发明自然连接边能够学习到基本的人体行为特征,同时非自然连接边可以学习到附加的行为特征,通过自然连接边和非自然连接边共同构成一张图,可以更加充分的表征人体运动信息,提高识别性能。
-
公开(公告)号:CN119941551A
公开(公告)日:2025-05-06
申请号:CN202411972412.1
申请日:2024-12-30
Applicant: 支付宝(杭州)信息技术有限公司 , 中国科学院自动化研究所
Abstract: 本说明书实施例提供一种图像生成方法、装置、设备与存储介质,该方法包括:通过在图像去噪过程中将时间步分为完整推理步和缓存修剪步,在缓存修剪步,修剪一部分图像单元,采用缓存图像特征进行替代,减少了对图像单元的推理次数,解决了图像生成模型推理过程中由于图像单元数量多并且需要进行多次推理导致的冗余计算问题,从而提高了图像生成模型的推理速度,同时结合完整推理步减少由于缓存引入的误差,平衡加速效果和生成质量。
-
公开(公告)号:CN118643865A
公开(公告)日:2024-09-13
申请号:CN202410542618.4
申请日:2024-04-30
Applicant: 中国科学院自动化研究所
Abstract: 本申请实施例提供一种基于不确定性定向极化和自适应插件的反蒸馏方法及装置,所述方法包括:获取用作教师网络的预训练母模型,所述预训练母模型是基于蒸馏损失和竞争损失训练得到的;基于所述预训练母模型、反蒸馏模型和反蒸馏插件获取目标模型,所述目标模型是基于反蒸馏损失和不确定性定向极化损失训练得到的,所述不确定性定向极化损失用于使所述目标模型对于样本扰动的极化方向保持不变。本申请实施例提供的基于不确定性定向极化和自适应插件的反蒸馏方法及装置,通过先训练一个没有反蒸馏能力的普通母模型作为教师模型,然后利用反蒸馏插件结合不确定性定向极化损失对模型进行优化,从而在保证模型性能的前提下,提高防御蒸馏攻击的效率。
-
公开(公告)号:CN114666571B
公开(公告)日:2024-06-14
申请号:CN202210214422.3
申请日:2022-03-07
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
Abstract: 本发明提供一种视频敏感内容检测方法及系统,该方法包括:对待检测视频执行解码方法的部分步骤,提取所述待检测视频的压缩域信息;根据所述压缩域信息判断所述待检测视频的质量是否合格;在所述待检测视频的质量不合格的情况下,确定所述待检测视频中不存在敏感内容;在所述待检测视频的质量合格的情况下,根据所述压缩域信息对所述待检测视频进行敏感内容检测,确定所述待检测视频中是否存在敏感内容。本发明降低了敏感内容检测的资源消耗,提高检测效率和检测准确率。
-
公开(公告)号:CN116824710A
公开(公告)日:2023-09-29
申请号:CN202310587326.8
申请日:2023-05-23
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
IPC: G06V40/40 , G06V40/16 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提供一种伪造人脸鉴别方法、装置、设备和存储介质,将待鉴别图像输入人脸鉴别模型;获取人脸鉴别模型输出的待鉴别图像对应的鉴别结果;其中,人脸鉴别模型用于获取待鉴别图像的面部单元一致性特征,并基于待鉴别图像的面部单元一致性特征确定待鉴别图像对应的鉴别结果;待鉴别图像的面部单元一致性特征用于表征待鉴别图像的各面部单元相关区域之间的相关性;人脸鉴别模型是基于样本图像和样本图像对应的鉴别标签训练得到的,提升了对于未知造假方法合成的图像的鉴别效果。
-
公开(公告)号:CN115909479A
公开(公告)日:2023-04-04
申请号:CN202211289157.1
申请日:2022-10-20
Applicant: 中国科学院自动化研究所
IPC: G06V40/20 , G06V10/764 , G06V10/80 , G06V10/82 , G06V20/40
Abstract: 本发明提供一种人体行为识别方法、装置、电子设备及可读存储介质,其中人体行为识别方法包括:从压缩视频数据中提取压缩域信息,压缩域信息中包括多个I帧、残差以及运动矢量;将各I帧及各目标残差所对应的深层特征进行融合处理,得到各I帧对应的局部时空特征;将相邻两个局部时空特征进行融合处理,得到压缩视频数据对应的全局时空特征;基于全局时空特征、运动矢量及残差,确定压缩视频数据对应的目标特征,并基于目标特征确定压缩视频数据对应的人体行为识别结果。通过将各I帧及各目标残差进行融合,能得到表达能力更强的局部时空特征以及全局时空特征,基于全局时空特征、运动矢量及残差进行人体行为识别,能够提高人体行为识别的准确率。
-
-
-
-
-
-
-
-
-