面向压缩域的视频敏感人物识别方法、系统及设备

    公开(公告)号:CN112990273A

    公开(公告)日:2021-06-18

    申请号:CN202110190037.5

    申请日:2021-02-18

    Abstract: 本发明属于图像识别领域,具体涉及了一种面向压缩域的视频敏感人物识别方法、系统、设备,旨在解决现有的敏感人物识别方法低效和浪费资源的问题。本发明包括:对待检测视频部分解码获取压缩域多模态信息,将压缩域多模态信息进行检测和校准,将校准后的压缩域人脸多模态信息通过训练好的多模态人脸识别网络获取多模态人脸特征,将多模态人脸特征与敏感人脸特征库进行比对,确认是否存在敏感人脸。其中,压缩域人脸多模态信息通过I分支、MV分支和Res分支分别提取不同的特征再进行多模态特征融合得到唯一的多模态人脸特征。本发明只需要进行部分解码就能完成特征提取,解决了现有技术低效和资源浪费的问题,同时保有较高的识别精度。

    基于特征空间变化的蒸馏学习方法、系统、装置

    公开(公告)号:CN110135562B

    公开(公告)日:2020-12-01

    申请号:CN201910360632.1

    申请日:2019-04-30

    Abstract: 本发明属于计算机视觉及机器学习领域,具体涉及了一种基于特征空间变化的蒸馏学习方法、系统、装置,旨在解决学生网络无法学习教师网络全局知识的问题。本发明方法包括:按照蒸馏学习教师网络的参数结构构建对应的学生网络;分别选取预设的网络层,计算每一层的特征空间表示以及特定两个层间的跨层特征空间变化矩阵;计算基于特征空间变化的损失函数,根据真实标签计算分类损失函数;通过两个损失函数的加权将教师网络的特征空间变化作为知识迁移到学生网络中。本发明将教师网络层与层之间的特征空间变化刻画为一种新的知识,从而,使得学生网络在学习层与层之间的特征空间变化时,就学习到整个教师网络全局的知识。

    深度卷积神经网络的压缩方法及系统

    公开(公告)号:CN111612143A

    公开(公告)日:2020-09-01

    申请号:CN202010440475.8

    申请日:2020-05-22

    Abstract: 本发明涉及一种深度卷积神经网络的压缩方法及系统,所述压缩方法包括:根据滤波器重要性选择方式和/或模型压缩率,确定待压缩深度卷积神经网络中不重要的滤波器;对不重要的滤波器施加渐进式稀疏约束,作为正则项加入到网络训练的损失函数中,得到优化损失函数;根据正则项,采用阈值迭代算法及反向传播算法联合求解,得到待压缩深度卷积神经网络的更新参数;基于所述优化损失函数及更新参数,获得具有滤波器稀疏形式的卷积神经网络模型;利用结构化剪枝算法,对所述具有滤波器稀疏形式的卷积神经网络模型进行剪枝,得到网络精度较高的压缩后的卷积神经网络模型。

    基于图卷积网络的人体骨架行为识别方法、系统、装置

    公开(公告)号:CN110222611A

    公开(公告)日:2019-09-10

    申请号:CN201910446596.0

    申请日:2019-05-27

    Abstract: 本发明属于计算机视觉及深度学习领域,具体涉及了一种基于图卷积网络的人体骨架行为识别方法、系统、装置,旨在解决基于图卷积神经网络的人体骨架行为识别结果精度不高的问题。本发明方法包括:获取骨架视频帧并归一化;构建每一帧图对应的人体关节自然连接图;学习非自然连接边,获得人体关节连接图;为人体关节连接图各条边分配权重值;进行图卷积操作,获得骨架序列的空间信息;在时间维度上进行卷积操作,获得骨架序列的行为类别。本发明自然连接边能够学习到基本的人体行为特征,同时非自然连接边可以学习到附加的行为特征,通过自然连接边和非自然连接边共同构成一张图,可以更加充分的表征人体运动信息,提高识别性能。

    基于不确定性定向极化和自适应插件的反蒸馏方法及装置

    公开(公告)号:CN118643865A

    公开(公告)日:2024-09-13

    申请号:CN202410542618.4

    申请日:2024-04-30

    Abstract: 本申请实施例提供一种基于不确定性定向极化和自适应插件的反蒸馏方法及装置,所述方法包括:获取用作教师网络的预训练母模型,所述预训练母模型是基于蒸馏损失和竞争损失训练得到的;基于所述预训练母模型、反蒸馏模型和反蒸馏插件获取目标模型,所述目标模型是基于反蒸馏损失和不确定性定向极化损失训练得到的,所述不确定性定向极化损失用于使所述目标模型对于样本扰动的极化方向保持不变。本申请实施例提供的基于不确定性定向极化和自适应插件的反蒸馏方法及装置,通过先训练一个没有反蒸馏能力的普通母模型作为教师模型,然后利用反蒸馏插件结合不确定性定向极化损失对模型进行优化,从而在保证模型性能的前提下,提高防御蒸馏攻击的效率。

    人体行为识别方法、装置、电子设备及可读存储介质

    公开(公告)号:CN115909479A

    公开(公告)日:2023-04-04

    申请号:CN202211289157.1

    申请日:2022-10-20

    Abstract: 本发明提供一种人体行为识别方法、装置、电子设备及可读存储介质,其中人体行为识别方法包括:从压缩视频数据中提取压缩域信息,压缩域信息中包括多个I帧、残差以及运动矢量;将各I帧及各目标残差所对应的深层特征进行融合处理,得到各I帧对应的局部时空特征;将相邻两个局部时空特征进行融合处理,得到压缩视频数据对应的全局时空特征;基于全局时空特征、运动矢量及残差,确定压缩视频数据对应的目标特征,并基于目标特征确定压缩视频数据对应的人体行为识别结果。通过将各I帧及各目标残差进行融合,能得到表达能力更强的局部时空特征以及全局时空特征,基于全局时空特征、运动矢量及残差进行人体行为识别,能够提高人体行为识别的准确率。

Patent Agency Ranking