-
公开(公告)号:CN119068375A
公开(公告)日:2024-12-03
申请号:CN202310617738.1
申请日:2023-05-30
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06V20/40 , G06V10/74 , G06V10/762 , G06V10/764 , G06V10/82 , G06F16/75 , G06F16/783
Abstract: 本发明实施例提供了一种视频类别确定方法和装置,其中,该方法包括:获取多个视频数据集作为训练样本,其中,训练样本包括支撑集和测试集;通过预训练网络分别提取支撑集和测试集的关键帧,并基于支撑集通过Faiss方法构建关键帧检索库;通过预先设定的小样本分类方法基于测试集的关键帧和关键帧检索库进行分类训练,得到分类模型;获取待分类的视频,通过分类模型对待分类的视频进行分类,得到分类结果。通过本发明,解决了视频某一维度信息的分类结果不够准确的问题,达到对视频维度信息分类更准确的效果。
-
公开(公告)号:CN109190750B
公开(公告)日:2021-06-08
申请号:CN201810737975.0
申请日:2018-07-06
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
Abstract: 本发明涉及深度学习技术领域,具体提供了一种基于对抗生成网络的小样本生成方法及装置,旨在解决如何在少量样本数据的情况下利用生成对抗网络生成样本数据的技术问题。为此目的,本发明提供的基于对抗生成网络的小样本生成方法能够基于对抗生成网络并根据随机噪声和标签信息,生成小样本类型对应的样本。在此过程中,本发明采用迁移学习和批量训练的方法对对抗生成网络进行网络训练,使生成对抗网络可以有效迁移应用于少量样本的对抗生成网络样本生成任务中。
-
公开(公告)号:CN110674673A
公开(公告)日:2020-01-10
申请号:CN201910697979.5
申请日:2019-07-31
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明提出了一种视频关键帧抽取方法、装置和存储介质,用以减少视频处理过程中的冗余信息,提高视频处理速度。所述视频关键帧抽取方法,包括:从待分析视频中提取I帧;针对提取的每一I帧,利用深度哈希网络确定其对应的深度哈希码,所述深度哈希网络为利用预先生成的图像样本对进行训练得到的;根据各I帧对应的深度哈希码,分别确定两两I帧深度哈希码之间的汉明距离;根据两两I帧深度哈希码之间的汉明距离,对提取的I帧进行聚类;针对每一聚类,分别确定该聚类中包含的每一I帧的信息熵;从每一聚类中,提取信息熵最大的I帧组成所述待分析视频的关键帧。
-
公开(公告)号:CN110120230A
公开(公告)日:2019-08-13
申请号:CN201910015466.1
申请日:2019-01-08
Applicant: 国家计算机网络与信息安全管理中心 , 哈尔滨工业大学
Abstract: 本发明提供一种声学事件检测方法及装置,用以解决相关技术中声学事件检测精度较低的问题。该方法包括:提取待检测的音频的目标特征,得到第一特征数据;将所述第一特征数据分别输入第一GMM模型以及第二GMM模型,得到第一似然概率以及第二似然概率,所述第一GMM模型基于声学事件的音频的特征数据进行训练得到,所述第二GMM模型基于非声学事件的音频的特征数据进行训练得到;根据所述第一似然概率以及所述第二似然概率依次确定所述待检测的音频中各单位音频的类型,所述类型包括声学事件以及非声学事件;将确定出的相邻的类型为声学事件的单位音频合并;当合并后的音频持续的时长超过阈值时,确定发生声学事件。本发明有效提高了声学事件检测的精度。
-
公开(公告)号:CN119068376A
公开(公告)日:2024-12-03
申请号:CN202310623041.5
申请日:2023-05-30
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06V20/40 , G06V20/00 , G06V40/16 , G06V40/40 , G06V10/46 , G06V10/50 , G06V10/74 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/0895 , G06N3/084
Abstract: 本申请公开了一种深度伪造视频的溯源方法和装置。其中,该方法包括:利用全局特征匹配预训练数据集对第一原始模型进行训练,得到第一目标模型,第一原始模型是结合语言监督和图像自监督的多任务模型,用于从全局特征匹配预训练数据集中学习图像与图像之间的特征关联、图像与文本之间的特征关联;利用第一目标模型对深度伪造视频进行溯源。本申请解决相关技术中不能对深度伪造视频进行溯源的技术问题。
-
公开(公告)号:CN117633092A
公开(公告)日:2024-03-01
申请号:CN202311358101.1
申请日:2023-10-19
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/26 , G06F16/2455
Abstract: 一种改进apriori的频繁有序项集挖掘方法,包括:采取项为首、特征为尾拼接的方式生成新项集,以发现数据中频繁出现的连续有序项集,而不是无序的关联规则;在候选项筛选中,加入项预判断,减少对事务集的扫描次数;另外,还采用记录项事务集的方式避免了对全部数据集的频繁扫描,提高了算法的时间性能。该方法有效解决了Apriori算法无法用于发现频繁有序项集,以及候选集筛选过程中频繁扫描整个事务集带来的时间开销巨大的问题。
-
公开(公告)号:CN115809368A
公开(公告)日:2023-03-17
申请号:CN202211660700.4
申请日:2022-12-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F40/289 , G06F40/30 , G06F16/35 , G06N3/0442 , G06N3/0464 , G06N3/045 , G06N3/048 , G06N3/047 , G06N3/08
Abstract: 本发明涉及侦测搜索技术领域,具体公开了一种基于HTML结构特征的端到端色情网站侦测方法,包括词嵌入层、Bi‑LSTM层、卷积层、Attention层,研究了搜索引擎的网站排名机制和HTML的标签结构特征,通过提取HTML源代码中的meta标签作为文本数据集,构建了BiLSTM+TextCNN+Attention协同模型用于色情网站侦测。
-
公开(公告)号:CN109902202A
公开(公告)日:2019-06-18
申请号:CN201910015462.3
申请日:2019-01-08
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明提供一种视频分类方法及装置,用以解决相关技术中基于显著性引导的分类模型的分类性能较低的问题。该方法包括:提取待分类视频的关键帧;将所述关键帧输入预先根据训练集训练得到的双路神经网络模型,得到所述视频的分类结果以及所述视频的显著图,所述训练集中包括按照视频类型进行分类的视频以及视频显著图,所述双路神经网络模型包括一路用于对所述视频进行分类的第一子神经网络以及一路用于确定所述视频的显著图的第二子神经网络;将得到的所述显著图中置信度高于第一阈值的显著图加入所述训练集;使用所述训练集中的视频显著图重新训练所述第二子神经网络,得到更新后的双路神经网络模型。本发明有效提高了视频分类的性能。
-
公开(公告)号:CN103390082B
公开(公告)日:2016-05-11
申请号:CN201310309391.0
申请日:2013-07-22
IPC: G06F17/50
Abstract: 随着机械加工精度的要求越来越高,如何在确保机床加工性能的前提下,合理配置机床几何误差,实现成本与加工精度的均衡,是机床制造亟待解决的问题。本发明针对多轴机床提出了一种新的基于零部件制造成本和质量损失的多目标几何精度优化分配方法,采用多体系统理论建立机床几何误差的综合空间误差模型,通过对几何误差影响最大的机床部件的加工特征建立机床部件的制造成本模型,同时结合质量损失成本建立了基于成本的目标函数,通过对几何误差的辨识,建立与部件精度等级相关的优化模型,即将所有精度参数变量欧式范数的最大化作为另一个目标函数,通过Isight和Matlab集成结合NSGA-Ⅱ来实现优化分配。
-
公开(公告)号:CN103207938A
公开(公告)日:2013-07-17
申请号:CN201310134241.0
申请日:2013-04-17
Applicant: 北京工业大学
IPC: G06F17/50
Abstract: 本发明涉及到重型龙门机床制造领域,更具体地涉及一种重型龙门机床超跨距横梁垂直导轨面起拱曲线设计方法。本发明通过优化导轨面起拱曲线解决了大跨距横梁垂直向导轨面在重力载荷作用下直线度误差及角度误差过大的问题。其关键在于考虑到溜板与横梁导轨面接触位置分左右两个接触面,从而会产生左右两条变形曲线,本发明充分利用这一关键点,将起拱曲线的起拱值及左右变形曲线的变形值一并考虑构建了直线度及转角误差的优化模型,并利用多目标遗传算法对起拱曲线进行了优化,优化效果符合国家标准。
-
-
-
-
-
-
-
-
-