-
公开(公告)号:CN114744861B
公开(公告)日:2023-03-10
申请号:CN202210542544.5
申请日:2022-05-18
Applicant: 哈尔滨工业大学
Abstract: 一种SiC MOSFET串扰抑制驱动电路,涉及电力电子技术领域。本发明是为了解决SiCMOSFET对线路的寄生参数敏感,器件高速动作会引发串扰,进而不适用于传统的SiMOSFET驱动电路的问题。本发明所述的一种SiC MOSFET串扰抑制驱动电路,在每个桥臂SiC MOSFET的栅源极之间均设有一组并联分压结构,所述并联分压结构包括电容C1、电阻R1和电阻R4,电容C1的一端、电阻R1的一端和电阻R4的一端均与SiC MOSFET的栅极相连,电容C1的另一端、电阻R1的另一端和电阻R4的另一端均与SiC MOSFET的源极相连。
-
公开(公告)号:CN113178989B
公开(公告)日:2022-10-21
申请号:CN202110467187.6
申请日:2021-04-28
Applicant: 哈尔滨工业大学
Abstract: 本发明公开一种蒸发冷却电机,包括机壳、定子铁芯、定子绕组、冷却壳体,定子铁芯与机壳相连,冷却壳体与机壳相连,定子绕组固定于定子铁芯上,冷却壳体与机壳之间的腔体内具有冷却液,机壳具有出气口和进液孔,出气口、进液孔均与冷却壳体、机壳围成的腔体相连通,出气口处设置风扇,风扇可转动地与机壳相连。本发明的蒸发冷却电机,设置冷却壳体,在冷却壳体与机壳之间设置冷却液,冷却液能够直接与定子铁芯、定子绕组接触,加热散热效率;冷却液吸收热量相变后,经由出气口向外排出,出气口设置风扇,冷却液蒸汽经过无动力的风扇,推动风扇运动做功,进而实现冷凝,从而构建冷却液蒸发‑循环‑回收利用体系。
-
公开(公告)号:CN112532137B
公开(公告)日:2022-07-12
申请号:CN202011506790.2
申请日:2020-12-18
Applicant: 哈尔滨工业大学
IPC: H02P21/14 , H02P21/13 , H02P21/24 , H02P27/08 , H02M7/5387
Abstract: 本发明提供了一种精确的逆变器非线性效应在线补偿方法,属于电机驱动控制技术领域。本发明首先需要辨识出设计逆变器非线性观测器的参数,即dq轴电感,所使用的dq轴电感辨识方法充分考虑了经典七段式SVPWM调制方法的缺陷,重新安排了零矢量的位置,同时可以不用考虑逆变器非线性的影响,利用辨识得到的dq轴电感设计基于超螺旋算法的磁链滑模观测器,将观测得到的逆变器非线性电压补偿至αβ轴电压参考指令。本发明针对相电流较小时,逆变器的非线性模型不明确,补偿不够精确的情况,提出了一种在线精确补偿逆变器非线性的方法,可以避免切换开关管带来的死区误差;实现逆变器非线性的精确补偿。
-
公开(公告)号:CN113178989A
公开(公告)日:2021-07-27
申请号:CN202110467187.6
申请日:2021-04-28
Applicant: 哈尔滨工业大学
Abstract: 本发明公开一种蒸发冷却电机,包括机壳、定子铁芯、定子绕组、冷却壳体,定子铁芯与机壳相连,冷却壳体与机壳相连,定子绕组固定于定子铁芯上,冷却壳体与机壳之间的腔体内具有冷却液,机壳具有出气口和进液孔,出气口、进液孔均与冷却壳体、机壳围成的腔体相连通,出气口处设置风扇,风扇可转动地与机壳相连。本发明的蒸发冷却电机,设置冷却壳体,在冷却壳体与机壳之间设置冷却液,冷却液能够直接与定子铁芯、定子绕组接触,加热散热效率;冷却液吸收热量相变后,经由出气口向外排出,出气口设置风扇,冷却液蒸汽经过无动力的风扇,推动风扇运动做功,进而实现冷凝,从而构建冷却液蒸发‑循环‑回收利用体系。
-
公开(公告)号:CN109995190B
公开(公告)日:2020-08-07
申请号:CN201910375624.4
申请日:2019-05-07
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种定子绕组与热管一体式散热结构的高转矩密度电机,机壳、转子组件和定子组件由外向内依次同轴设置,定子铁芯的外周面均匀设置有多个定子齿,相邻的两个定子齿间形成定子槽,电机定子绕组包括多个绕组线圈,转子组件包括永磁体,还包括热管散热器,每个定子齿上均缠绕有一个绕组线圈,相邻两个绕组线圈间设置有双层绝缘纸分割层,热管散热器包括吸热段和散热段,吸热段通过导热硅胶固定在每个定子槽中的双层绝缘纸分割层间,定子轴内设有散热空间,热管的散热段延伸至散热空间内。本发明利用热管散热器将定子绕组的损耗发热导出并利用散热结构进行耗散,可以解决高转矩密度电机定子发热大、温升高的问题,可以用于电动汽车轮子直驱系统。
-
公开(公告)号:CN109950993A
公开(公告)日:2019-06-28
申请号:CN201910371644.4
申请日:2019-05-06
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种高速电机转子磁极结构,包括圆筒状磁体,在圆筒状磁体表面均匀开有若干个纵向切缝,每个纵向切缝均沿圆筒状磁体周向开设形成圆弧形切缝,圆弧形切缝的弧长占其所在圆的周长的80%-95%,若干圆弧形切缝同轴设置,若干圆弧形切缝在圆筒状磁体上错位排布,若干圆弧形切缝将圆筒状磁体沿轴向分割成彼此连接的多段磁体结构,且相邻两磁体段内的涡流电流方向相反,产生磁场相反,相互抵消。本发明解决了高速大功率电机转子损耗大、温升高的问题,减小电机转子涡流损耗,从而减小转子温升,使得磁极结构可以用于高速大功率电机中,提高电机的运行稳定性。
-
公开(公告)号:CN104901511B
公开(公告)日:2018-03-09
申请号:CN201510304701.9
申请日:2015-06-04
Applicant: 哈尔滨工业大学
IPC: H02K55/00
CPC classification number: Y02E40/62
Abstract: 一种横向磁通高速超导电机系统,它为解决微型、高速、高功率密度超导电机的实用化而提出。它包括定子外部导磁环、超导线圈组、定子异型导磁块、转子磁钢组、转子、转轴组成,此种超导电机利用超导绕组的无阻特性,通入间歇性的直流电流,利用环形超导绕组的机械特性减小超导电机的外径,同时利用超导绕组的失超恢复特性提高超导绕组的直流载流能力及超导电机的转速,扩充了超导电机在高速电机领域内的应用。
-
公开(公告)号:CN103296862A
公开(公告)日:2013-09-11
申请号:CN201310012685.7
申请日:2013-01-14
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种具有超导磁悬浮结构的长行程磁浮平面电机,利用超导材料的特有性能,解决了现有磁悬浮长行程平面电机承载力低、悬浮力和驱动力交叉耦合等问题。电机由定子和动子组成,定子包括基台和二维永磁阵列,动子包括平台、常导线圈组和超导线圈组。所述平面电机的悬浮力由位于动子平台底部的八组超导线圈组提供,每角有两组超导线圈组,四角分布有四组外围超导线圈组和四组内围超导线圈组,每个超导线圈组由四个独立无铁芯超导线圈组成;所述平面电机的驱动力由位于动子平台底部四边的常导线圈组提供。与传统的磁悬浮长行程平面电机相比,本发明提出的平面电机具有高承载力、悬浮力与驱动力完全解耦、控制简单的优点。
-
公开(公告)号:CN101701643A
公开(公告)日:2010-05-05
申请号:CN200910310128.7
申请日:2009-11-20
Applicant: 哈尔滨工业大学
IPC: F16K31/06
Abstract: 超磁致伸缩高速喷射阀,它涉及一种高速喷射阀。本发明为解决现有的超磁致伸缩阀门中的致动器存在抑制超磁致伸缩棒的温度高、结构复杂、体积较大的问题。方案一:第一线圈通电使第一超磁致伸缩棒沿轴线方向伸长,第一顶块带动阀芯移动,流体经第一通孔、堵头中心孔、第一斜孔,并从液体流通孔流出;第一线圈断电,第一超磁致伸缩棒回复到原来的长度,阀芯复位,保持常闭的工作状态。方案二:第二线圈通电使第二超磁致伸缩棒沿轴线方向伸长,第二顶块带动第二顶杆移动,流体经第二通孔、第二斜孔,并从阀座中心孔流出;第二线圈断电,第二超磁致伸缩棒回复到原来的长度,第二顶杆复位,保持常闭的工作状态。本发明适用于高精度的流量控制装置中。
-
公开(公告)号:CN117544058B
公开(公告)日:2025-02-07
申请号:CN202311514148.2
申请日:2023-11-14
Applicant: 哈尔滨工业大学
IPC: H02P25/06 , H02P23/12 , H02P23/14 , H02P23/04 , H02P25/034
Abstract: 一种抑制宏微直线运动平台耦合干扰的线性自抗扰控制方法,它属于电机控制领域。本发明解决了现有耦合干扰抑制方法的控制律设计过程繁琐,且解耦效果不佳的问题。本发明采取的主要技术方案为:步骤一、建立宏微直线运动平台的力学方程;步骤二、对建立的力学方程进行拉普拉斯变换,得到宏微直线运动平台的等效耦合模型;步骤三、建立直线电机和音圈电机的空间方程,基于直线电机的空间方程和扩张状态观测器估计宏动台的状态变量和耦合误差,基于音圈电机的空间方程和扩张状态观测器估计微动台的状态变量和耦合误差;并根据估计的状态变量和耦合误差设计线性状态误差反馈控制律。本发明方法可以用于对宏微直线运动平台的耦合干扰进行抑制。
-
-
-
-
-
-
-
-
-