-
公开(公告)号:CN105584045B
公开(公告)日:2017-11-17
申请号:CN201510990147.4
申请日:2015-12-25
Applicant: 吉林大学
IPC: B29C67/00
Abstract: 本发明公开了一种多材料零件3D打印装置及其打印方法,本装置是由支架装置、可控搅拌挤出头装置、数个数字化材料供应系统、工作平台和控制器组成,可控搅拌挤出头和控制器固定设置在支架装置上,数字化材料供应系统固定设置在数个可控搅拌挤出头下方,工作平台设置在支架装置内;打印方法依次为:混合浆料的配制,数据建模处理,多材料打印成型,将坯体内的高分子粘结剂进行脱除,烧结;本发明通过数个数字化材料供应系统控制各种材料的进给量,进而控制混合材料的成分比例,使其随着空间位置的不同材料的成分及比例不同,脱脂烧结后可得到随着位置不同材料组分不断变化的零件,工艺简单,成本低,节省材料。
-
公开(公告)号:CN105772727A
公开(公告)日:2016-07-20
申请号:CN201610218039.X
申请日:2016-04-11
Applicant: 吉林大学
CPC classification number: B22F1/0077 , B22F1/0059 , B22F3/227 , B22F2001/0066 , B22F2999/00 , B33Y10/00 , B33Y30/00 , B22F2202/05
Abstract: 本发明公开了一种金属材料梯度零件的3D打印成型方法,将注射成形与3D打印技术相结合,在打印过程中施加运动磁场,铁磁性材料受磁场作用在熔道内定向移动,可得铁磁性与非铁磁性金属梯度零件,在计算机以及运动磁场的控制下,实现真正意义上的3D打印金属梯度零件,可直接成型梯度零件,并在任意空间位置实现梯度分布,通过改变运动磁场的磁场强弱、运动速度以及磁场作用次数来获得不同程度梯度的零件,零件可直接用于工程中,节省材料和设备成本,适合广泛推广应用。
-
公开(公告)号:CN105584045A
公开(公告)日:2016-05-18
申请号:CN201510990147.4
申请日:2015-12-25
Applicant: 吉林大学
IPC: B29C67/00
Abstract: 本发明公开了一种多材料零件3D打印装置及其打印方法,本装置是由支架装置、可控搅拌挤出头装置、数个数字化材料供应系统、工作平台和控制器组成,可控搅拌挤出头和控制器固定设置在支架装置上,数字化材料供应系统固定设置在数个可控搅拌挤出头下方,工作平台设置在支架装置内;打印方法依次为:混合浆料的配制,数据建模处理,多材料打印成型,将坯体内的高分子粘结剂进行脱除,烧结;本发明通过数个数字化材料供应系统控制各种材料的进给量,进而控制混合材料的成分比例,使其随着空间位置的不同材料的成分及比例不同,脱脂烧结后可得到随着位置不同材料组分不断变化的零件,工艺简单,成本低,节省材料。
-
公开(公告)号:CN105538718A
公开(公告)日:2016-05-04
申请号:CN201610027447.7
申请日:2016-01-15
Applicant: 吉林大学
CPC classification number: B29K2055/02 , B29K2067/046 , B29K2077/00
Abstract: 本发明公开了一种熔融沉积成型3D打印方法,该方法是将热塑性塑料线材通过送丝机构输送到挤出头,通过挤出头挤出成半熔融状态的熔丝,材料挤出后不直接成型,挤出的半熔融状态的熔丝先受到拉伸,挤出的熔丝经过拉伸变细后在成型室内进行沉积成型3D打印。本发明提高了材料挤出速度,从而提高了沉积成型速度,使3D打印效率提高,相同精度条件下,制造效率提高4倍以上。本发明沉积的熔丝宽度最小可以达到0.03mm,比现有技术提高3倍以上。本发明使用的材料与装置与现有技术相近,设备成本与材料成本与现有技术相当,由于生产效率提高,使用成本降低。
-
公开(公告)号:CN105500720A
公开(公告)日:2016-04-20
申请号:CN201610064285.4
申请日:2016-01-29
Applicant: 吉林大学
CPC classification number: G03G15/225 , B22F3/1055 , B22F2003/1056 , B28B1/001 , B29K2055/02 , B29K2423/00
Abstract: 本发明公开了一种适用于多材料多工艺3D打印方法及所用的打印装置,所用的打印装置是由运动床身装置、感应鼓处理装置、固化装置、成型台、清理器、废料仓和供料仓组成,成型台、清理器和供料仓分别设置运动床身装置上,废料仓设置在清理器下端,感应鼓处理装置和固化装置分别设置运动床身装置内;利用感光鼓选择性吸附实体粉末材料,然后在经过处理的成型台上定向滚动,实现选择性铺设粉末,根据工艺信息将不同种类粉末材料固化,然后利用辅助铺粉系统将支撑材料铺设成型台上,下降一粉末层厚度,如此循环,层层叠加可得多材料、多功能三维实体,实现了选择性铺粉,提高效率、节约材料,实现了激光烧结、胶水黏结及热固化多工艺成型。
-
公开(公告)号:CN105001652A
公开(公告)日:2015-10-28
申请号:CN201510499628.5
申请日:2015-08-15
Applicant: 吉林大学
Abstract: 本发明公开了一种基于明胶的3DP打印方法,本发明所用的粉末材料由明胶、聚乙烯吡咯烷酮、颜料及抗氧化剂组成,固化剂由水、醋酸或甘油组成,通过控制3D打印工艺参数,使固化剂与粉末材料在指定的区域以特定的比例混合,混合后粉末材料产生聚合固化成型,未混合区域仍保持粉末状态,最后经过预加热和模型加热固化定型。本发明利用明胶的水溶性,在需要成型的区域喷洒固化剂使明胶粉末聚合固化,与其他3DP利用粘结剂将粉末粘结成型所不同。本发明具有原料易得且价格低廉、固化剂环保安全,不会污染原材料粉末无需脱除等优点。本发明成品几何精度及稳定性高、表面光洁度好,可用于展示模型及铸模。
-
公开(公告)号:CN111674035B
公开(公告)日:2025-01-28
申请号:CN202010618220.6
申请日:2020-06-30
Applicant: 吉林大学
IPC: B29C64/118 , B29C64/20 , B29C64/386 , B29C64/314 , B29C64/379 , B33Y10/00 , B33Y30/00 , B33Y40/10 , B33Y40/20 , B33Y50/00 , B33Y70/10
Abstract: 本发明公开了仿生多级螺旋结构增强复合材料的3D打印方法与装置,该装置包括数字化连续纤维编织系统、成型制造系统及控制系统,根据预定义的几何模型和内部多级螺旋缠绕纤维分布模式,建立相关三维模型,并进行离散化处理;利用纤维编织系统引导连续纤维增强的复合丝材编织成多级仿生螺旋缠绕结构,进一步用于3D打印成型系统;最后通过后处理固化成型,实现了强韧化仿生复合材料样件的制备,本发明在航空航天、汽车、船舶和风力发电等领域高端装备的关键部件具有巨大的应用潜力。
-
公开(公告)号:CN115778817B
公开(公告)日:2024-09-03
申请号:CN202211423309.2
申请日:2022-11-15
Applicant: 吉林大学
Abstract: 本发明涉及3D打印领域,特别涉及面向智能药物缓控释体系的3D打印装置及方法,用于实现精细化多药物、可设计、集成式智能药物缓控释体系的一体化成型。打印装置内含药物供应系统、微包囊包覆挤出系统、三维成型平台和控制系统四大硬件部分,通过微包囊包覆挤出系统内精妙的流道设计及打印墨水间水‑水不溶及水‑油相分离的材料设计,结合工艺参数的优选,能够实现内含复杂核壳结构微包囊的智能药物缓控释体系的集成制造,在药物缓控释领域具有重大应用潜力。
-
公开(公告)号:CN115891150B
公开(公告)日:2024-08-30
申请号:CN202211382074.7
申请日:2022-11-07
Applicant: 吉林大学
IPC: B29C64/20 , B29C64/321 , B29C64/393 , B29C64/106 , B22F12/58 , B22F12/90 , B22F10/10 , B22F10/85 , B28B1/00 , B33Y10/00 , B33Y30/00 , B33Y40/00 , B33Y50/02
Abstract: 本发明涉及3D打印领域,特别涉及一种基于微流控原理的仿生像素化异质材料的3D打印装置及方法,用于实现精细化刚柔耦合异质材料的一体化成型。打印装置在传统挤出式3D打印装置的基础上增加了模块化变通道混流器,通过层层累积获得内含像素化仿生刚柔耦合异质材料打印实体,结合打印前刚性材材料及柔性材料前驱体的制备以及打印完成后打印制件的后处理,实现了单一通道内刚柔耦合材料特征性分布,其独特的材料分布模式在组织工程及制造领域具有重大应用潜力。
-
公开(公告)号:CN113635551B
公开(公告)日:2022-12-13
申请号:CN202110935856.8
申请日:2021-08-16
Applicant: 吉林大学威海仿生研究院
IPC: B29C64/118 , B29C64/295 , B29C64/386 , B33Y10/00 , B33Y30/00 , B33Y50/00
Abstract: 本发明公开了基于形状记忆聚合物的自折叠4D打印方法,用于解决传统形状记忆聚合物单一赋形策略的问题。主要包括:首先,将形状记忆聚合物按照预设的打印路径及参数进行二维平面复杂结构的自由成型;其次,在预定位置内设合适的预应变,即于样件内部内置“铰链”结构;最后,单侧局部热源动态顺序激发,实现二维平面结构到三维立体架构的可控顺序成型,所获得的结构兼具永久性及可逆性。在航天航空自展开、制造领域具有重大应用潜力。
-
-
-
-
-
-
-
-
-