-
公开(公告)号:CN109402541B
公开(公告)日:2021-07-20
申请号:CN201710695949.1
申请日:2017-08-15
Applicant: 核工业西南物理研究院 , 厦门钨业股份有限公司
Abstract: 本发明属于金属材料技术领域,特别涉及一种颗粒弥散强化钨块体材料制备方法。通过高温烧结方法制备颗粒弥散强化钨生坯;将生坯放入氢气炉中预热,加热温度1500‑1600℃,时间1‑2h;然后将预热的颗粒弥散强化钨生坯放入高速锻锤上进行大变形量的高能率成形加工,锻打压力为30‑40MPa;锻打完成后,为了消除残余应力,将钨块放入退火炉中,退火温度为1000℃。本发明能有效的控制组织织构,使得材料塑性和加工性能显著提高,且锻造过程中锭坯不易开裂,达到良好开坯效果。本发明能制备得到完全致密的钨块体材料,并且材料具有良好的力学性能,在温度低于100℃具有塑性,高温下也具有较高的高温强度和塑性;同时该方法制备的材料成本低,适宜大规模制造。
-
公开(公告)号:CN112408952A
公开(公告)日:2021-02-26
申请号:CN202011413358.9
申请日:2020-12-03
Applicant: 厦门钨业股份有限公司 , 核工业西南物理研究院
IPC: C04B35/10 , C04B35/622 , C04B35/638
Abstract: 本发明提供一种高热导薄壁陶瓷管及其制造方法,其中,高热导薄壁陶瓷管的制造方法,包括:步骤一、取一定量4N纯度以上、粒度D50为0.2μm~0.6μm的氧化铝粉末原料进行精细处理;步骤二、在加热状态下,将处理过的氧化铝粉末与粘结剂混合均匀,挤出制得陶瓷喂料;步骤三、将陶瓷喂料注塑成型,制得薄壁管生胚;步骤四、对薄壁管生胚进行脱脂处理;步骤五、对脱脂处理后的薄壁管进行保温;步骤六、保温后,烧结制得薄壁陶瓷管。通过上述方法制得的陶瓷管,管内径为3mm~4mm,壁厚为0.3mm~0.5mm,相对密度在99.5%以上,室温下热导率能够达到30W/(m·K)以上,1000℃热导率能够达到7W/(m·K)以上。
-
公开(公告)号:CN110453166B
公开(公告)日:2020-10-09
申请号:CN201910874706.3
申请日:2019-09-17
Applicant: 厦门钨业股份有限公司 , 南京理工大学
Abstract: 本发明公开了一种提高纯钼块材塑性的制备方法,所述纯钼块材中钼的含量为99.95wt%以上,所述纯钼块材的制备包括如下步骤:选取纯度99.9wt%以上的钼粉作为原料的工序;将所述钼粉经过压制制成生坯的工序;将所述生坯经过烧结制成烧结坯,使所述烧结坯的相对密度为94.5%‑98%的工序;将所述烧结坯进行锻造和真空热处理的工序;所述钼粉的氧含量在500ppm以下,所述钼粉的费氏粒度为1.7μm‑3.5μm,所述钼粉的松装密度为0.75g/cm3‑3.0g/cm3。上述方法通过原料性能控制,结合过程工艺调整,制得的纯钼块材塑性显著提升,塑性延展率达到钼合金水平。
-
公开(公告)号:CN110438350A
公开(公告)日:2019-11-12
申请号:CN201910874573.X
申请日:2019-09-17
Applicant: 厦门钨业股份有限公司 , 南京理工大学
Abstract: 本发明公开了一种纯钼块材及其制备方法,所述纯钼块材中钼的含量为99.95wt%以上,通过电子背散射衍射对所述纯钼块材的晶向进行分析,晶向(111)占比为35%-45%,晶向(001)占比为15%-35%,晶向(101)占比为15%-35%,该纯钼块材相比现有纯钼块材在塑性方面显著提升,塑性延展率达到钼合金水平。纯钼块材的制备至少包括如下步骤:选取纯度99.9wt%以上的钼粉作为原料的工序;将所述钼粉经过压制制成生坯的工序;将所述生坯经过烧结制成烧结坯,使所述烧结坯的相对密度为94.5%-98%的工序;将所述烧结坯进行锻造和真空热处理的工序。
-
公开(公告)号:CN211742660U
公开(公告)日:2020-10-23
申请号:CN201922163894.7
申请日:2019-12-05
Applicant: 核工业西南物理研究院 , 厦门钨业股份有限公司
IPC: G21B1/13
Abstract: 本实用新型属于聚变反应堆技术,具体涉及一种用于聚变反应堆的具有阻氚功能的第一壁。包括沉积层、中间层和基底,沉积层为钨涂层,直接接触等离子体,中间层为阻氚涂层,位于沉积层和基底之间。用钨涂层取代钨块,满足第一壁工况要求和使用寿命要求且提高了第一壁结构的重量和经济性。显著降低等离子体运行过程中的感应电流及相应的电磁载荷,既能够满足聚变反应堆中第一壁的苛刻工况要求,又减小了第一壁部件中氚滞留量,从而提高了聚变反应堆氚循环效率,降低了氚增殖和氚供给的需求。
-
-
-
-