一种双包覆复合材料及其制备方法和应用

    公开(公告)号:CN114388759A

    公开(公告)日:2022-04-22

    申请号:CN202210037385.3

    申请日:2022-01-13

    Applicant: 厦门大学

    Abstract: 本发明提供了一种双包覆复合材料及其制备方法和应用,属于电极材料技术领域。本发明提供的双包覆复合材料,包括层状正极材料、经固相点包覆在所述层状正极材料表面的快离子导体材料层以及经液相连续包覆在所述快离子导体材料层表面的导电有机聚合物层。本发明提供的双包覆复合材料中,层状正极材料经快离子导体材料层以及导电有机聚合物层包覆,其中快离子导体材料层可有效增加锂离子从外界向体相的传输速度,导电有机聚合物层可有效增强电子从外界到体相的传递速度;将所述双包覆复合材料作为锂离子电池正极材料使用,能够在大电流密度的充放电条件下和较高的载量以及较低的导电剂含量条件下依旧具有较高的循环稳定性。

    阳极金属电氧化制备金属化合物并偶联产氢的方法

    公开(公告)号:CN113445059A

    公开(公告)日:2021-09-28

    申请号:CN202110724066.5

    申请日:2021-06-29

    Applicant: 厦门大学

    Abstract: 本发明提出了一种阳极金属电氧化制备金属化合物并偶联产氢的方法。采用金属活动性顺序表中位置居中的非贵金属铁片为阳极,使其在较低电压下发生氧化,阳极生成对应金属化合物微纳材料,阴极在铂片电极上发生析氢反应。本发明能显著降低制氢所需理论电压,其成本低廉,阳极产物为金属化合物微纳材料,具有工业利用价值。同时其反应过程稳定高效,避免了OER和有机物电氧化存在的能耗高、电催化剂失稳等问题。本发明在电解制氢、能源转化与存储等领域具有广泛的应用前景,同时提供了一种新型金属固体化合物微纳材料的电化学合成方法。

    钠离子电池层状‑隧道复合结构锰基正极材料的制备方法

    公开(公告)号:CN105118984B

    公开(公告)日:2017-08-29

    申请号:CN201510509454.6

    申请日:2015-08-19

    Applicant: 厦门大学

    Abstract: 钠离子电池层状‑隧道复合结构锰基正极材料的制备方法,涉及一种钠离子电池正极材料。提供一种制备具有高容量、优异的循环和倍率性能、操作简单、成本低等优点的钠离子电池层状‑隧道复合结构锰基正极材料的制备方法。1)将钠盐及锰盐溶于去离子水中得溶液A;2)将沉淀剂溶于去离子水得溶液B;3)将溶液B加入溶液A中,搅拌后将剩余溶剂蒸干,将所得前驱物干燥,煅烧,淬火,即得钠离子电池层状‑隧道复合结构锰基正极材料。通过结构复合来集成P2型层状结构和隧道结构的优势,从而得到具有高比容量,优异的循环性能及倍率性能的钠离子电池正极材料。

    一种锂离子电池硅基负极材料粘结剂

    公开(公告)号:CN104934609A

    公开(公告)日:2015-09-23

    申请号:CN201510219082.3

    申请日:2015-05-04

    Applicant: 厦门大学

    CPC classification number: H01M4/621 C09J105/00 C08L5/00

    Abstract: 一种锂离子电池硅基负极材料粘结剂,涉及锂离子电池。提供价格便宜、易于工业化,可显著地提高硅基负极材料电化学性能的一种锂离子电池硅基负极材料粘结剂。所述锂离子电池硅基负极材料粘结剂按质量百分比的组成为:瓜尔豆胶50%~100%,余量为黄原胶。利用价格便宜、易于使用的含瓜尔豆胶的粘结剂显著地提高了硅基负极材料的电化学性能。因此所述的硅基负极材料粘结剂具有较高的性价比和较好的市场潜力。

    一种锂离子电池硅基负极材料粘结剂的制备方法

    公开(公告)号:CN103762367A

    公开(公告)日:2014-04-30

    申请号:CN201410027869.5

    申请日:2014-01-21

    Applicant: 厦门大学

    CPC classification number: H01M4/622 C08J3/24 H01M10/0525

    Abstract: 一种锂离子电池硅基负极材料粘结剂的制备方法,涉及锂离子电池硅基负极。将多价阳离子盐溶于去离子水,再加入海藻酸钠,搅拌后即得锂离子电池硅基负极材料粘结剂。将硅基活性材料和导电添加剂研磨,加入锂离子电池硅基负极材料粘结剂中,混合得浆液;将铜箔压成圆片,粗糙后清洗,干燥;将得到的浆液涂抹在铜箔上,干燥得采用所述锂离子电池硅基负极材料粘结剂的锂离子电池负极。将采用所述锂离子电池硅基负极材料粘结剂的锂离子电池负极移到手套箱中,以锂片作为对电极,组装2025扣式电池,其中,电解液为1M六氟磷酸锂为导电盐的碳酸乙烯酯、碳酸二甲酯和碳酸二乙酯溶液,加入2%碳酸亚乙烯酯添加剂,封口。工艺简单。

    锂离子电池锡-钴-磷合金负极材料及其制备方法

    公开(公告)号:CN101399338A

    公开(公告)日:2009-04-01

    申请号:CN200810072038.4

    申请日:2008-10-29

    Applicant: 厦门大学

    Abstract: 锂离子电池锡-钴-磷合金负极材料及其制备方法,涉及一种电池负极材料,尤其是涉及一种高容量锂离子电池三维多孔锡-钴-磷合金负极材料及其制备方法。提供一种具有初始容量大、首次充放电效率高、不可逆容量小和循环性能好等特点,以及制备工艺的设备投资小、操作简单,易规模化生产等优点的锂离子电池锡-钴-磷合金负极材料及其制备方法。其组成及其按质量百分比的含量为:Sn∶Co∶P=72%∶22%∶6%。将酒石酸钾钠和柠檬酸钾溶解于水中,搅拌,分别加入锡酸钠和氯化钴,得溶液A;在溶液A中加入次磷酸纳,在泡沫铜集流体或平面铜集流体上电沉积,得到锂离子电池锡-钴-磷合金负极材料。

    一种不对称反应电极及其应用
    27.
    发明公开

    公开(公告)号:CN118957624A

    公开(公告)日:2024-11-15

    申请号:CN202411060716.0

    申请日:2024-08-05

    Applicant: 厦门大学

    Abstract: 本发明涉及电解水技术领域,具体涉及一种不对称反应电极及其应用。所述不对称电极的由多种不同导电系数/催化活性的电极材质组成。本发明的不对称反应电极结构,采用不同催化层的设计,电极内部反应速率不对称,造成产气过程中电极两侧反应速率不同,产气量不同,从而在内部产生压力场,以此调控气泡大小,强化气泡脱附过程,降低电极工作过程中气泡在电极表面的覆盖率,提升电解水催化性能。

    一种锂离子电池的正极补锂材料及其制备方法

    公开(公告)号:CN117012965A

    公开(公告)日:2023-11-07

    申请号:CN202310864444.9

    申请日:2023-07-14

    Applicant: 厦门大学

    Abstract: 本发明涉及锂离子电池补锂/预锂化技术领域,公开了一种锂离子电池的正极补锂材料及其制备方法,其中制备方法包括如下步骤:(1)将导电碳单质和纳米氧化锂超声分散在醇溶剂中,得到分散溶液;(2)将步骤(1)得到的分散溶液进行充分砂磨,进行干燥;(3)将步骤(2)中干燥后的材料经过研磨均匀后压实,随后再次研磨,在二氧化碳氛围中100—180℃保温处理6‑18h,完成后,得到黑色粉末即为合成的正极补锂材料,本方法制备的正极补锂材料具备高的比容量,可满足目前近乎所有的商业锂电池的补锂需求。

    一种过渡金属基锂硫电池正极材料及其制备方法

    公开(公告)号:CN111653786B

    公开(公告)日:2021-11-05

    申请号:CN202010600842.6

    申请日:2020-06-28

    Applicant: 厦门大学

    Abstract: 一种过渡金属基锂硫电池正极材料及其制备方法,涉及锂硫电池正极材料领域。所述过渡金属基锂硫电池正极材料具有单层或多层碳基框架,碳基框架上负载有镍钴合金、镍钴磷化物或镍钴硫化物等。先设计合成了乙酸镍钴纳米晶体,随后通过选用不同有机分子配体如单宁酸、植酸等的原位溶解‑沉淀反应,合成了一系列的中空材料类似物,经过惰性气氛碳化后,分别得到了碳载金属、碳载金属磷化物等,经过热熔注入单质硫,硫能够被正极材料包覆,载硫后分别测试了单层或双层中空材料在锂硫电池中的性能表现。制备的过渡金属基中空复合正极材料具有高载硫量、高比容量、循环稳定性好的优势,在储能设施、便携式电源、新能源汽车等领域具有广阔前景。

    一种锂离子电池硅碳锰复合负极材料及其制备方法

    公开(公告)号:CN107069000B

    公开(公告)日:2021-08-03

    申请号:CN201710181892.3

    申请日:2017-03-24

    Applicant: 厦门大学

    Abstract: 一种锂离子电池硅碳锰复合负极材料及其制备方法,涉及锂离子电池负极材料。组成成分包括纳米硅、硅锰合金和有机物裂解的无定型碳,硅锰合金生长在硅表面或硅颗粒之间,无定型碳包裹在硅和硅锰合金外面。将酚醛树脂加入乙醇中,溶解后,加入醋酸锰,得溶液A;将纳米硅放入溶液A中,超声处理后,得溶液B;将溶液B在水浴锅中搅拌蒸干得到前驱物,干燥后煅烧,即得。制备工艺简单,对环境友好,同时作为锂离子电池负极材料具有较高的比容量、优异的循环性能和倍率性能。所制备的材料中Si0.7Mn0.1C复合材料作为锂离子负极材料,初始容量达到869.5mAh g‑1,循环50圈后较第二圈容量保持率在95.9%以上。

Patent Agency Ranking