一种基于高斯滤波的高维脑核磁图像多阈值分割方法

    公开(公告)号:CN113763409B

    公开(公告)日:2023-05-02

    申请号:CN202110995534.2

    申请日:2021-08-27

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于高斯滤波的高维脑核磁图像多阈值分割方法,属于智慧医疗技术领域。其技术方案为:首先,获取脑核磁图像数据F;其次,通过标准差为脑核磁图像的粗糙性度量的高斯滤波进行自适应平滑滤波预处理;再次,对预处理后的脑核磁图像进行灰度直方图统计,并根据灰度直方图的峰值设定脑部组织的灰质、白质、脑脊液和背景的三个初始分割阈值(t1,t2,t3);最后,将脑核磁图像中三个目标组织和背景的四类间方差σ2(t1,t2,t3)作为混合蛙跳算法的适应度函数寻找三个最优分割阈值并输出分割后的二值化图像。本发明的有益效果为:降低了噪声对脑核磁图像分割的影响,提高了对脑核磁图像中三个目标组织的分割精度,对脑核磁图像智能辅助分割和诊断具有较强的应用价值。

    一种面向大数据眼底图像的并行超像素Spark聚类方法

    公开(公告)号:CN115063877A

    公开(公告)日:2022-09-16

    申请号:CN202210630121.9

    申请日:2022-06-06

    Applicant: 南通大学

    Abstract: 本发明涉及图像处理分析技术领域,具体涉及一种面向大数据眼底图像的并行超像素Spark聚类方法。步骤包括:S10、系统首先获取用户上传的大数据眼底图像,将请求信息发送至诊断系统,并调用后台Java程序和Python代码;S20、调用基于Spark平台的超像素FCM加速聚类算法,对眼底图像进行超像素处理;S30、通过Spark框架进行分布式计算,用超像素块的均值像素颜色特征进行编码并转化为弹性分布性数据集RDD,将RDD划分到各节点,各节点进行FCM隶属度计算后汇总,再分区进行聚类中心更新计算,直至算法收敛;S40、输出FCM聚类的结果并保存眼底图像聚类结果;S50、将大量眼底图像数据同时运行结果存储至数据库MySQL中,等待前端请求查看时,将指定眼底图像聚类结果反馈至系统用户。

    一种基于高斯滤波的高维脑核磁图像多阈值分割方法

    公开(公告)号:CN113763409A

    公开(公告)日:2021-12-07

    申请号:CN202110995534.2

    申请日:2021-08-27

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于高斯滤波的高维脑核磁图像多阈值分割方法,属于智慧医疗技术领域。其技术方案为:首先,获取脑核磁图像数据F;其次,通过标准差为脑核磁图像的粗糙性度量的高斯滤波进行自适应平滑滤波预处理;再次,对预处理后的脑核磁图像进行灰度直方图统计,并根据灰度直方图的峰值设定脑部组织的灰质、白质、脑脊液和背景的三个初始分割阈值(t1,t2,t3);最后,将脑核磁图像中三个目标组织和背景的四类间方差σ2(t1,t2,t3)作为混合蛙跳算法的适应度函数寻找三个最优分割阈值并输出分割后的二值化图像。本发明的有益效果为:降低了噪声对脑核磁图像分割的影响,提高了对脑核磁图像中三个目标组织的分割精度,对脑核磁图像智能辅助分割和诊断具有较强的应用价值。

Patent Agency Ranking