一种基于粒-组协同的双向模糊粒舱并行属性约简加速方法

    公开(公告)号:CN118170823B

    公开(公告)日:2024-12-03

    申请号:CN202410285400.5

    申请日:2024-03-13

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于粒‑组协同的双向模糊粒舱并行属性约简加速方法,属于大规模数据挖掘技术领域;解决了传统数据处理技术需要大量计算和内存空间资源的技术问题。其技术方案为:包括以下步骤:S10、对数据集进行划分;S20、在粒化过程中引入双向互邻策略,利用虚拟样本构造双向模糊粒舱模型;S30、将属性组和双向模糊粒舱相结合;S40、在主节点将各子节点的约简聚合,对排序后的结果再次进行属性评价。本发明的有益效果为:利用并行计算技术可以提高计算效率,缩短计算时间,降低内存占用和能源消耗,有利于加快属性约简算法的实现速度。

    用于眼底硬性渗出图像分割的超像素三支证据DPC方法

    公开(公告)号:CN117058393B

    公开(公告)日:2024-06-25

    申请号:CN202311108211.2

    申请日:2023-08-30

    Applicant: 南通大学

    Abstract: 本发明提供了一种用于眼底硬性渗出图像分割的超像素三支证据DPC方法,属于图像处理分析技术领域。解决了聚类医学图像分割中参数难以确定,边缘区域划分不清晰的技术问题。其技术方案为:包括以下步骤:S10、人工获取眼底硬性渗出图像的病变区域;S20、对眼底硬性渗出图像进行预处理得到图像的CIELab空间;S30、对获得的CIELab空间进行SLIC超像素处理;S40、基于三支聚类理论将图像分割分为两阶段;S50、在获取第一阶段回传的病变图像信息之上。本发明的有益效果为:本发明通过引入超像素算法提高了运行效率,为糖尿病视网膜硬性渗出病变疾病的临床诊断和患者的发现治疗提供了重要的医学影像依据。

    一种基于粒-组协同的双向模糊粒舱并行属性约简加速方法

    公开(公告)号:CN118170823A

    公开(公告)日:2024-06-11

    申请号:CN202410285400.5

    申请日:2024-03-13

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于粒‑组协同的双向模糊粒舱并行属性约简加速方法,属于大规模数据挖掘技术领域;解决了传统数据处理技术需要大量计算和内存空间资源的技术问题。其技术方案为:包括以下步骤:S10、对数据集进行划分;S20、在粒化过程中引入双向互邻策略,利用虚拟样本构造双向模糊粒舱模型;S30、将属性组和双向模糊粒舱相结合;S40、在主节点将各子节点的约简聚合,对排序后的结果再次进行属性评价。本发明的有益效果为:利用并行计算技术可以提高计算效率,缩短计算时间,降低内存占用和能源消耗,有利于加快属性约简算法的实现速度。

    一种基于Transformer的Python伪代码自动生成方法

    公开(公告)号:CN112947930B

    公开(公告)日:2024-05-17

    申请号:CN202110134579.0

    申请日:2021-01-29

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于Transformer的Python伪代码自动生成方法,包括以下步骤:S1、在Github上下载Python源代码和对应的伪代码以构建初始语料库,并对该语料库执行一系列预处理操作得到语料库;S2、将语料库分成训练集、验证集,训练集用于构建并训练模型,验证集用于进行模型优化;S3、基于上述构建的语料库,对构建的基于Transformer的CNN模型进行训练,利用结合位置编码方法以及注意力机制attention进行优化,得到伪代码自动生成模型。本发明的有益效果为:该方法可以帮助开发人员自动快速地生成具有较强可读性的伪代码,生成的伪代码准确地描述代码的实现功能和具体实现步骤。

    一种基于质量过滤器的缺陷报告标题自动生成方法

    公开(公告)号:CN114676298B

    公开(公告)日:2024-04-19

    申请号:CN202210379210.0

    申请日:2022-04-12

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于质量过滤器的缺陷报告标题自动生成方法,属于软件质量保障技术领域。其技术方案为:首先从GitHub上选择高质量开源项目,再对数据集进行数据预处理,训练自动生成模型,当预测新的缺陷报告时,分别基于通过学习低质量缺陷报告特征进行过滤的深度学习模块和通过判断历史数据集中是否存在与新缺陷报告内容相似的数据实现预测的信息检索模块,来协同预测该缺陷报告能否生成高质量标题,若预测能,则通过自动生成模型生成标题,反之则提出警告。本发明的有益效果为:通过使用正则表达式进行数据预处理,提高了数据处理效率和方法的兼容性;通过双模块协同过滤,提高了自动生成模型生成的标题质量与效率。

    一种基于双重信息检索的Bash代码注释生成方法

    公开(公告)号:CN113961237A

    公开(公告)日:2022-01-21

    申请号:CN202111220663.0

    申请日:2021-10-20

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于双重信息检索的Bash代码注释生成方法,包括以下步骤:(1)搜集数据得到一个高质量语料库,对该语料库进行去重操作,得到数据集;(2)使用CodeBert提取代码语义特征;(3)将代码片段视为由词元组成的集合,通过文本编辑距离计算集合之间的词法相似度,通过词法相似度从k个候选代码片段中检索出与目标代码词法相似度最高的代码片段;(4)从数据集中检索出与目标代码最相似代码片段,将该代码对应的注释作为目标代码的代码注释。本发明的有益效果为:可以根据目标代码在代码库中检索出最相似代码,从而生成高质量的代码注释,提高Bash代码的可读性和可理解性,帮助开发人员快速理解Bash代码。

    一种基于模块选择和权重更新的跨项目缺陷预测方法

    公开(公告)号:CN111966586A

    公开(公告)日:2020-11-20

    申请号:CN202010776172.3

    申请日:2020-08-05

    Applicant: 南通大学

    Abstract: 本发明属于软件质量保障领域,公开了一种基于模块选择和权重更新的跨项目缺陷预测方法。该方法首先抽取目标项目和源项目程序模块并进行属性度量,对源项目程序模块进行缺陷类别标注,构建目标项目程序模块数据集和源项目程序模块数据集;对源项目数据集进行筛选、权重赋值获得带权重程序模块数据集D;然后执行权重平衡并训练支持向量机模型clf;通过此模型选择一定数目的目标项目程序模块并人工进行缺陷类别标注,执行权重更新方法更新带权重程序模块数据集D,直至得到满足条件,得到支持向量机模型clf。本发明的优点是仅需在目标项目中标记极少部分(5%)的程序模块就可大幅提升模型的性能,且模型性能更准确。

    一种基于双重信息检索的Bash代码注释生成方法

    公开(公告)号:CN113961237B

    公开(公告)日:2024-08-20

    申请号:CN202111220663.0

    申请日:2021-10-20

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于双重信息检索的Bash代码注释生成方法,包括以下步骤:(1)搜集数据得到一个高质量语料库,对该语料库进行去重操作,得到数据集;(2)使用CodeBert提取代码语义特征;(3)将代码片段视为由词元组成的集合,通过文本编辑距离计算集合之间的词法相似度,通过词法相似度从k个候选代码片段中检索出与目标代码词法相似度最高的代码片段;(4)从数据集中检索出与目标代码最相似代码片段,将该代码对应的注释作为目标代码的代码注释。本发明的有益效果为:可以根据目标代码在代码库中检索出最相似代码,从而生成高质量的代码注释,提高Bash代码的可读性和可理解性,帮助开发人员快速理解Bash代码。

    一种基于CodeBERT微调和检索增强的Bash代码注释生成方法

    公开(公告)号:CN114880022B

    公开(公告)日:2024-06-14

    申请号:CN202210469925.5

    申请日:2022-04-28

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于CodeBERT微调和检索增强的Bash代码注释生成方法,属于计算机技术领域,解决了Bash代码开发过程中需要耗费人工成本手动编写注释的问题。其技术方案为:(1)使用构建的数据集对预训练模型CodeBERT进行微调;(2)在代码注释生成阶段,使用构建的双重信息检索方法检索出目标代码的最相似代码;(4)将目标代码和相似代码输入到微调后的CodeBERT编码器中,对得到的两个表征向量经过归一化操作;(5)将两个表征向量输入到融合层得到融合向量;(6)将融合向量输入到解码器中得到代码注释。本发明的有益效果为:快速根据现有Bash代码生成对应注释,提高Bash代码可读性和理解性。

Patent Agency Ranking