一种基于分数阶理论的锂离子电池建模及参数辨识方法

    公开(公告)号:CN113671378A

    公开(公告)日:2021-11-19

    申请号:CN202110784229.9

    申请日:2021-07-12

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于分数阶理论的锂离子电池建模及参数辨识方法,属于离子电池技术领域。解决了整数阶等效电路模型描述电池的动态特征的能力弱,低阶模型不能满足精度要求,高阶模型又会增加了模型复杂度和计算量的技术问题。其技术方案为:包括以下步骤:步骤1)采用经验公式法确定OCV‑SOC的关系;步骤2)推导系统辨识方程;步骤3)构建改进蚁群优化算法的辨识流程。本发明的有益效果为:本发明经过分数阶理论改进的PNGV模型虽然呈现非线性,更加精确,推导出基于分数阶的PNGV模型辨识表达式,并且采用改进的蚁群优化算法进行在线辨识,可以获得估计精度高的模型参数和分数阶阶数,可以准确、有效地反应锂电池的实时性能。

    一种基于参数在线辨识的锂离子电池SOC估计方法

    公开(公告)号:CN113420444A

    公开(公告)日:2021-09-21

    申请号:CN202110698555.8

    申请日:2021-06-23

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于参数在线辨识的锂离子电池SOC估计方法,包括以下步骤:步骤1)通过间歇放电静置法测取SOC从1到0的锂离子电池端电压、负载电流数据,确定OCV‑SOC的关系;步骤2)建立锂离子电池的双极化电路模型,确定电池参数辨识向量以及离散空间的状态空间方程;步骤3)构建RB算法的辨识流程,对电池模型参数进行在线辨识;步骤4)构架自适应卡尔曼滤波算法估计流程;步骤5)构建RB和AEKF联合估计算法,两部分交叉进行,对模型参数和状态向量进行同步更新。本发明的有益效果为:本发明通过电池模型建立状态空间方程,将SOC作为状态变量,采用该方法的前提是高保真的电池模型和准确的模型参数辨识。

Patent Agency Ranking