一种磁性金属MOF衍生的磁电共损吸波剂及制备方法

    公开(公告)号:CN113347863A

    公开(公告)日:2021-09-03

    申请号:CN202110592956.5

    申请日:2021-05-28

    Abstract: 本发明涉及一种磁性金属MOF衍生的磁电共损吸波剂及制备方法。该磁电共损吸波剂为磁性金属MOF衍生的金属氧化物与还原氧化石墨烯的复合材料,其制备步骤为将金属盐与有机配合物混合,加入氧化石墨烯水溶液,转移到容器中反应得到前驱物单(双、三)金属MOF与rGO的复合物,在通气体保护的管式炉中进行热处理,收集并与石蜡按比例进行混合制成环形件,最后测定样品的电磁波吸收性能。该方法有可能改变物质的微观晶体结构,拓宽材料的有效吸收带宽,并且在在较低厚度下具有较高的反射损耗。本发明制得的复合吸波剂颗粒尺寸均匀、形貌完整、结晶性好。

    一种石墨烯负载MOF衍生物气凝胶及其制备方法

    公开(公告)号:CN111825081A

    公开(公告)日:2020-10-27

    申请号:CN202010691273.0

    申请日:2020-07-17

    Abstract: 本发明公开了一种石墨烯负载MOF衍生物气凝胶及其制备方法,该气凝胶包括如下原料组分制成:氧化石墨烯、FeCl3·6H2O、Ni(NO3)2·6H2O和苯二甲酸,其中,FeCl3·6H2O、Ni(NO3)2·6H2O和苯二甲酸的摩尔比为1~3:1~3:1~3,由FeCl3·6H2O、Ni(NO3)2·6H2O和苯二甲酸合成的Fe-Ni双金属MOF与氧化石墨烯的质量比为1:10~10:1。并提供该气凝胶的制备方法,本发明的制备方法温和快速、组分可控、宏观尺度,有助于解决石墨烯/双金属MOF及其衍生物复合体系中组分、结构不可控等关键技术问题,所制备的石墨烯负载MOF衍生物气凝胶在电催化储能、电磁屏蔽、吸附、传感等领域具有广阔的应用前景。

    一种器件表面原位组装石墨烯气凝胶的制备方法及气敏应用

    公开(公告)号:CN110726754A

    公开(公告)日:2020-01-24

    申请号:CN201911006457.2

    申请日:2019-10-22

    Inventor: 邵高峰 沈晓冬

    Abstract: 本发明涉及一种器件表面原位组装石墨烯气凝胶的制备方法及气敏应用,本发明将石墨烯气凝胶的制备过程和转移到器件表面过程合二为一,极大地简化了石墨烯气凝胶气体传感器的制备过程,最大限度地提高了石墨烯气凝胶的气体传感性能。原位组装得到的聚吡咯耦合W18O49纳米线/氮掺杂石墨烯气凝胶的气体传感器对低浓度NO2具有优异的响应性能。此外该方法可适用于制备导电聚合物-纳米金属氧化物-石墨烯三元复合气凝胶,以及在其他功能器件表面组装石墨烯基气凝胶。

    一种芳纶纳米纤维气凝胶球及其制备方法

    公开(公告)号:CN115160636B

    公开(公告)日:2023-10-13

    申请号:CN202210978676.2

    申请日:2022-08-16

    Abstract: 本发明公开了一种芳纶纳米纤维气凝胶球及其制备方法,属于多孔材料制备领域。一种芳纶纳米纤维气凝胶球的制备方法,包括以下步骤:将芳纶纤维、氢氧化钾、二甲基亚砜混合搅拌得到芳纶纳米纤维分散液;芳纶纳米纤维分散液用滴液设备逐滴滴入凝固浴中,形成湿凝胶球;湿凝胶球放入老化液中老化,再经过冷冻干燥得到气凝胶球;气凝胶球置于管式炉中,在气氛保护下加热,然后冷却,得到芳纶纳米纤维气凝胶球。

    一种碳纳米纤维气凝胶微球及其制备方法

    公开(公告)号:CN115159500B

    公开(公告)日:2023-07-21

    申请号:CN202210894099.9

    申请日:2022-07-27

    Abstract: 本发明公开了微波吸收材料领域的一种碳纳米纤维气凝胶微球的制备方法,所述制备方法包括:步骤一:先将芳纶纤维、氢氧化钾分散在二甲基亚砜得到芳纶纳米纤维分散液,经过滴液装置将分散液逐滴滴入凝固浴中获得湿凝胶球,经过老化、冷冻干燥得到芳纶纳米纤维气凝胶球;步骤二:将芳纶纳米纤维气凝胶球置于管式炉中,按照1~5℃/min的升温速率将温度升至600~1000℃并保温1~3h,然后自然降温,得到碳纳米纤维气凝胶微球。本发明得到的碳纳米纤维气凝胶微球的核壳结构可以使电磁波次序进入和衰减,增强阻抗匹配性能和电磁波反射与散射;本发明得到的碳纳米纤维气凝胶微球的最小反射损耗值在厚度为3.1mm时达到‑51.89dB,厚度为3.65mm时最大有效吸收带宽为8.88GHz。

    一种有序碳-聚硅氧烷复合气凝胶及其制备方法、应用

    公开(公告)号:CN115155470B

    公开(公告)日:2023-05-16

    申请号:CN202210978640.4

    申请日:2022-08-16

    Abstract: 本发明公开了一种有序碳‑聚硅氧烷复合气凝胶及其制备方法、应用,属于气凝胶材料领域。本发明的制备方法以氧化石墨烯为基本构筑单元,采用取向冷冻技术,实现了有序各向异性的碳基气凝胶,以硅氧烷为硅源,采用浸渍工艺结合原位溶胶凝胶策略制备了有序碳‑聚硅氧烷复合气凝胶,解决了碳基气凝胶强度低、疏水性差、隔热温区窄等问题,开发出高强高弹、宽温域超级隔热、超疏水的有序碳‑聚硅氧烷复合气凝胶材料。所述的气凝胶在微滴传输、智能流体可控界面、极端高温及低温环境下热管理领域具有良好的应用前景。

    一种SiCN陶瓷吸波剂及其制备方法

    公开(公告)号:CN115745627A

    公开(公告)日:2023-03-07

    申请号:CN202211544850.9

    申请日:2022-11-30

    Abstract: 本发明公开了一种SiCN陶瓷吸波剂及其制备方法,属于吸波材料领域。通过合成ZIF‑67,将其与聚硅氮烷前驱体进行交联,并在氮气、氦气、氩气氛围下热解得到ZIF‑67/SiCN陶瓷吸波剂。ZIF‑67的引入有效降低聚合物转化陶瓷的结晶温度,在促进陶瓷内部微结构原位生成碳化硅、氮化硅和结晶碳等纳米结晶相的同时,会形成金属硅化物等其他的高介电纳米相,在陶瓷内部形成多相层次微结构。低介电的PDC‑SiCN可以作为良好的基材有利于电磁波进入材料内部,而SiCN陶瓷基体中纳米晶相和乱层碳的存在可以实现多异质界面极化、偶极极化和传导损耗能力的提高。本发明制得的SiCN陶瓷吸波剂可以同时兼顾在超低厚度下的宽频有效吸收和低频下的超低反射损耗,为高性能陶瓷吸波材料的研制提供了新思路。

    一种碳化硅气凝胶材料及其制备方法

    公开(公告)号:CN114315365B

    公开(公告)日:2022-12-13

    申请号:CN202210081860.7

    申请日:2022-01-24

    Abstract: 本发明属于陶瓷气凝胶领域,公开了一种碳化硅气凝胶材料及其制备方法,制备方法包括以下步骤:(1)将对苯二甲醛、氨基硅烷、有机硅氧烷、醋酸、乙醇和去离子水混合均匀,经过有机硅烷水解共缩聚反应得到聚硅氧烷湿凝胶;(2)将步骤(1)得到的聚硅氧烷湿凝胶经过老化和真空干燥获得聚硅氧烷气凝胶;(3)将步骤(2)得到的聚硅氧烷气凝胶在氩气氛围下以1‑5℃/min升温速率加热至1400‑1600℃高温热处理2‑5h,得到块状碳化硅气凝胶。本发明采用溶胶凝胶结合真空干燥制备有机桥联半倍硅氧烷气凝胶前驱体,再经过一步高温碳热还原过程得到了结晶性好、物相单一、结构完整的块状碳化硅气凝胶。

    一种SiOCN陶瓷气凝胶吸波材料及其制备方法

    公开(公告)号:CN114276150B

    公开(公告)日:2022-11-15

    申请号:CN202210080020.9

    申请日:2022-01-24

    Abstract: 本发明属于陶瓷气凝胶领域,公开了一种SiOCN陶瓷气凝胶吸波材料及其制备方法,其制备方法包括以下步骤:(1)将对苯二甲醛、有机硅氧烷、氨基硅烷、醋酸、乙醇和去离子水混合均匀,经过有机硅烷水解共缩聚反应得到聚硅氧烷湿凝胶;(2)将步骤(1)得到的聚硅氧烷湿凝胶经过老化和真空干燥获得聚硅氧烷气凝胶;(3)将步骤(2)得到的聚硅氧烷气凝胶在氩气或氮气氛围下以1‑5℃/min升温速率加热至800‑1200℃高温热处理1‑3h,得到块状SiOCN气凝胶。本发明极大地简化了SiOCN气凝胶的制备工艺,降低了生产成本,增加了工艺的可操作性和可控性,本发明采用的原料成本低廉,具有良好的化学稳定性,对空气和水份不敏感,极大地降低了生产过程中安全风险。

    一种碳纳米纤维气凝胶微球及其制备方法

    公开(公告)号:CN115159500A

    公开(公告)日:2022-10-11

    申请号:CN202210894099.9

    申请日:2022-07-27

    Abstract: 本发明公开了微波吸收材料领域的一种碳纳米纤维气凝胶微球的制备方法,所述制备方法包括:步骤一:先将芳纶纤维、氢氧化钾分散在二甲基亚砜得到芳纶纳米纤维分散液,经过滴液装置将分散液逐滴滴入凝固浴中获得湿凝胶球,经过老化、冷冻干燥得到芳纶纳米纤维气凝胶球;步骤二:将芳纶纳米纤维气凝胶球置于管式炉中,按照1~5℃/min的升温速率将温度升至600~1000℃并保温1~3h,然后自然降温,得到碳纳米纤维气凝胶微球。本发明得到的碳纳米纤维气凝胶微球的核壳结构可以使电磁波次序进入和衰减,增强阻抗匹配性能和电磁波反射与散射;本发明得到的碳纳米纤维气凝胶微球的最小反射损耗值在厚度为3.1mm时达到‑51.89dB,厚度为3.65mm时最大有效吸收带宽为8.88GHz。

Patent Agency Ranking