一种基于MobileViT与UNet模型的图像分割方法及系统

    公开(公告)号:CN117726820A

    公开(公告)日:2024-03-19

    申请号:CN202311834754.2

    申请日:2023-12-28

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于MobileViT与UNet模型的图像分割方法及系统,应用图像识别领域,方法包括:将原始的RGB三通道图像大小进行调整,并对应调整标签图像大小;将调整后的RGB图像输入分割模型进行训练,获得训练好的模型参数;所述分割模型包括编码器和解码器;所述编码器用于对调整后的RGB图像进行特征提取;所述解码器的输入为所述编码器的输出,所述解码器输出与编码器部分相同空间分辨率的特征图;使用训练好的分割模型进行图像分割,输出与标签图像的大小一致的分割图像。本发明降低了模型的计算成本,提高了分割速度和分割精度,适用于实时和大规模应用。

    基于多尺度特征和通道注意力的无参考屏幕视频质量评价方法及装置

    公开(公告)号:CN117173609A

    公开(公告)日:2023-12-05

    申请号:CN202311112440.1

    申请日:2023-08-31

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于多尺度特征和通道注意力的无参考屏幕视频质量评价方法及装置,该方法包括:获取视频中采用随机抽样方式抽取的视频帧;构建视频质量评价模型并进行训练,得到经训练的视频质量评价模型,视频质量评价模型包括依次连接的特征提取模块、通道注意力模块、视频时序特征提取模块和平均池化层,特征提取模块用于提取视频帧中的多尺度特征,通道注意力模块用于对多尺度特征进行特征加权,视频时序特征提取模块用于进行特征提取得到时空维度特征,并经过平均池化层计算视频对应的质量分数;将视频帧输入经训练的视频质量评价模型,得到视频的质量分数,具有较好的屏幕视频质量评价效果。

    一种非标记细胞显微图像增强方法及系统

    公开(公告)号:CN116342432B

    公开(公告)日:2023-08-01

    申请号:CN202310576207.2

    申请日:2023-05-22

    Applicant: 华侨大学

    Abstract: 本发明公开了一种非标记细胞显微图像增强方法及系统,属于图像处理技术领域,包括如下步骤:S1、输入非标记细胞显微图像;S2、利用滑动窗口中心灰度增强算法,对非标记细胞显微图像位于滑动窗口中心的像素进行灰度值预增强;S3、重复滑动窗口,使得滑动窗口中心遍历非标记细胞显微图像,对每一个像素进行灰度值预增强,获得预增强的非标记细胞显微图像;S5、利用预增强的非标记细胞显微图像与经自适应权值约束的高斯多尺度加权图像作差分运算,得到增强后的非标记细胞显微图像。本发明具有较好的鲁棒性及普适性,且运算速度更快;本发明对特征图像的提取更精确,且能进一步提高非标记细胞显微图像的对比度。

    一种基于多通道图像融合的细胞弱标签制作方法及系统

    公开(公告)号:CN112614142A

    公开(公告)日:2021-04-06

    申请号:CN202011560828.4

    申请日:2020-12-25

    Applicant: 华侨大学

    Inventor: 温廷羲 潘婷

    Abstract: 本发明提供了机器学习技术领域的一种基于多通道图像融合的细胞弱标签制作方法及系统,方法包括:步骤S10、获取染色细胞核图像以及染色细胞质图像;步骤S20、对染色细胞核图像进行二值化处理得到连通细胞子图;步骤S30、设定一面积阈值,基于面积阈值从所述连通细胞子图分割出堆叠图像以及非堆叠图像;步骤S40、基于堆叠图像从染色细胞质图像中分割出相同位置及大小的细胞质子图,利用分水岭算法基于细胞质子图对堆叠图像进行分割,得到第一分割结果;步骤S50、利用分水岭算法对非堆叠图像进行分割,得到第二分割结果;步骤S60、合并第一分割结果与第二分割结果得到染色细胞核图像的弱标签。本发明的优点在于:极大的提升了细胞弱标签的置信度。

    融合3D点云的多模态自编码器零配件智能检测方法及装置

    公开(公告)号:CN119848569A

    公开(公告)日:2025-04-18

    申请号:CN202510315537.5

    申请日:2025-03-18

    Applicant: 华侨大学

    Abstract: 本发明公开了融合3D点云的多模态自编码器零配件智能检测方法及装置,涉及图像处理领域,方法包括:S1,获取各型号零配件的体积、重量和3D点云数据;进行归一化和2D深度图像转化;S2,将2D深度图像进行裁剪和特征提取,与归一化的重量和体积数据进行特征融合,得到多模态特征;S3,进行灰度化处理得到多模态特征灰度图;S4,划分训练集和测试集;使用训练集训练自编码器模型;S5,将测试集输入训练好的自编码器模型,得到各型号零配件的特征编码;S6,将待检测零配件的多模态特征灰度图输入训练好的自编码器模型,得到待检测零配件的特征编码,进行特征比对得到型号信息。本发明用自编码器提取融合3D点云的多模态特征,提高了零配件检测准确性。

    一种基于自编码器与改进ResNet18模型的陶瓷包装检测方法

    公开(公告)号:CN119831991A

    公开(公告)日:2025-04-15

    申请号:CN202510305282.4

    申请日:2025-03-14

    Applicant: 华侨大学

    Abstract: 本发明涉及目标检测技术领域,公开了一种基于自编码器与改进ResNet18模型的陶瓷包装检测方法,包括以下步骤:数据库构建步骤,构建陶瓷包装盒图像数据库;模型构建步骤,结合改进的ResNet18和CBAM构建产品包装盒状态检测模型;图像采集步骤,采集待检测陶瓷包装盒的图像作为检测图像,利用自编码器模型将检测图像与陶瓷包装盒图像数据库进行匹配,获取位置信息;图像分割步骤,利用位置信息对检测图像进行区域分割,提取待检测的子图像;包装检测步骤,子图像输入到产品包装盒状态检测模型,检测是否漏装陶瓷。本发明在复杂工业环境中展现出优异的适应性与鲁棒性,为智能化包装检测的准确性和可靠性奠定了坚实的基础。

    基于空间频域滤波的激光散斑衬比血流成像方法及系统

    公开(公告)号:CN116051423A

    公开(公告)日:2023-05-02

    申请号:CN202310206847.4

    申请日:2023-03-07

    Applicant: 华侨大学

    Abstract: 本发明公开了基于空间频域滤波的激光散斑衬比血流成像方法及系统,涉及生物组织医学成像领域。该方法包括:S1,图像采集步骤;S2,二维快速傅里叶变换步骤;S3,空间频域滤波步骤;S4,二维快速傅里叶逆变换步骤;S5,时域处理步骤;S6,调制步骤。本发明通过空间频域滤波提取散斑图像中的背景信号,抑制光照背景的不均匀性;相比于一维快速傅里叶变换,利用二维快速傅里叶变换分析法来分离散斑信号和背景信号,有效降低计算复杂度的同时提高计算速度;利用空间频域滤波和时域叠加平均散斑信号计算深度调制衬比值,有效提高LSCI成像的衬比度和信噪比,也因此进一步提升了成像的动态范围。

Patent Agency Ranking