-
公开(公告)号:CN114266973B
公开(公告)日:2024-08-09
申请号:CN202111588195.2
申请日:2021-12-23
Applicant: 华侨大学
Abstract: 本发明提供了一种基于人车部件联合学习的载人电动车再识别方法及系统,所述方法包括:在训练阶段,构建双分支深度学习网络,获取载人电动车图像作为训练图像集对网络进行训练,得到基于人车部件联合学习的载人电动车再识别模型;在测试阶段,使用训练阶段得到的基于人车部件联合学习的载人电动车再识别模型,对查询图像和注册图像集的图像进行特征提取,计算查询图像特征和注册图像特征之间的距离,选取注册图像集中与查询图像距离近的图像,即为载人电动车再识别结果。本发明利用双分支深度学习网络对电动车进行再识别,可有效提高人车识别准确度,并提高整体识别效率,有利于协助交警快速追查电动车肇事者并规范电动车驾驶。
-
公开(公告)号:CN118397659A
公开(公告)日:2024-07-26
申请号:CN202410828405.8
申请日:2024-06-25
Applicant: 华侨大学
Abstract: 本发明公开了一种基于全局特征与头肩特征多核融合的行人识别方法及装置,涉及图像识别领域,包括:采用经训练的行人头肩部检测模型对行人图像进行头肩部检测,得到行人头肩部图像;在行人识别模型中,将行人图像和行人头肩部图像分别输入全局特征提取分支和头肩特征提取分支,得到全局特征向量和头肩特征向量并输入多核融合模块进行融合,得到融合特征向量,根据全局特征向量、头肩特征向量和融合特征向量构建损失函数,以训练行人识别模型,得到经训练的行人识别模型;将待识别的行人图像及其对应的行人头肩部图像输入经训练的行人识别模型,得到对应的融合特征向量,再进行行人识别。本发明解决鱼眼摄像机下图像特征差异大、准确度低的问题。
-
公开(公告)号:CN118368483A
公开(公告)日:2024-07-19
申请号:CN202410788949.6
申请日:2024-06-19
Applicant: 华侨大学
IPC: H04N21/44 , G06V20/40 , G06V10/764
Abstract: 本发明公开了一种电网环境下的视频帧间篡改检测方法、装置、设备及介质,方法包括以下步骤:获取包含多个视频的数据集;对每个视频,计算每帧画面的所有行像素的平均亮度值,获得每帧的行亮度序列,并连接所有帧的行亮度序列获得行亮度信号样本;对行亮度信号样本采用去除直流分量和下采样操作,获得预处理后的一维时间序列样本;利用一维时间序列样本训练时间序列异常检测模型;通过序列异常检测模型对待检测的视频进行检测,以输出所述视频的分类结果。本发明无须依赖参考电网频率数据库,也无需对视频中的电网频率信号进行估计,采用神经网络方法学习视频亮度序列的异常特征来检测视频帧间篡改,适用场景多,实用性强。
-
公开(公告)号:CN118196840A
公开(公告)日:2024-06-14
申请号:CN202410610290.5
申请日:2024-05-16
Applicant: 华侨大学
Abstract: 本发明公开了一种基于语义偏好挖掘的行人再辨识方法,涉及人工智能、机器视觉领域,包括:利用预训练的语义分割模型将行人图像处理为语义分割图,将语义分割图空间划分为若干部件语义块,计算不同语义在语义分割图与部件语义块中的比例,根据不同语义的比例对部件语义块分组进行语义对齐,获得各部件语义块分组对应的部件序号;基于部件序号对部件特征分组,利用自注意网络将各部件特征组投影到公共嵌入空间并进行偏好挖掘,继而利用偏好信息对各部件特征组进行自适应聚合,增强行人再辨识准确性。
-
公开(公告)号:CN118196731A
公开(公告)日:2024-06-14
申请号:CN202410605567.5
申请日:2024-05-16
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
Abstract: 本发明公开了一种基于通道与空间量子注意力学习的车辆再辨识方法及装置,涉及车辆再辨识领域,包括:利用深度网络从车辆图像中提取车辆的特征映射;设计通道量子注意力学习分支和空间量子注意力学习分支,分别对残差模块输出的特征映射学习通道量子注意力掩码和空间量子注意力掩码,并将两种注意力掩码融合为通道‑空间复合量子注意力掩码,用于增强车辆的特征映射,使深度网络能够更全面捕捉特征映射中的重要特征。本发明利用量子叠加与纠缠特性实现车辆注意力学习,能够提高特征学习效果,改善车辆再辨识的准确率,解决了传统机器学习模型难以学习这些复杂的非线性关系的问题。
-
公开(公告)号:CN117495714B
公开(公告)日:2024-04-12
申请号:CN202410004081.6
申请日:2024-01-03
Applicant: 华侨大学
IPC: G06T5/70 , G06N3/0455 , G06N3/0464 , G06T5/10 , G06T5/50
Abstract: 本发明公开了一种基于扩散生成先验的人脸图像复原方法、装置及可读介质,涉及图像处理模块,包括:构建基于预训练的扩散模型的人脸图像复原模型,将待复原的人脸图像输入前向加噪模块中逐步增加噪声,得到噪声图像;将噪声图像输入反向去噪模块中逐步去噪,生成最终复原的人脸图像;将第t步的噪声图像及第t步的时间戳输入噪声预测器,预测得到第t步的噪声;在前向加噪模块中,将第t步的噪声图像和第t步的噪声输入结合融合反演的前向扩散公式,得到第t+1步的噪声图像;在反向去噪模块中,对第t步的噪声图像进行零阈值分解,并与第t步的噪声输入反向扩散公式,得到第t‑1步的噪声图像,解决了现有技术生成的复原图像在真实性和一致性差问题。
-
公开(公告)号:CN117476250B
公开(公告)日:2024-03-12
申请号:CN202311764347.9
申请日:2023-12-21
Applicant: 华侨大学
Abstract: 本发明公开了一种基于多目标跟踪的流行病调查预测方法、装置及可读介质,涉及图像处理领域,包括:获取目标场景区域的视频数据并进行目标检测以及目标跟踪,得到多目标跟踪结果;基于多目标跟踪结果构建目标场景区域中出现的人员在每个时间步所对应的接触网络;构建当前时间步所对应的传染病动力学模型,若存在感染者,则获取感染者在下个时间步的轨迹数据,根据感染者在下个时间步的轨迹数据和下个时间步的接触网络动态调整当前时间步所对应的传染病动力学模型,得到下个时间步所对应的传染病动力学模型,确定下个时间步的感染者的接触者及其轨迹数据,以解决现有模型无法精确模拟出感染者以及接触者的活动空间的问题。
-
公开(公告)号:CN117237197B
公开(公告)日:2024-03-01
申请号:CN202311475296.8
申请日:2023-11-08
Applicant: 华侨大学
IPC: G06T3/4053 , G06N3/0455 , G06N3/0464 , G06N3/08 , G06V10/80
Abstract: 本发明公开了一种基于交叉注意力机制与Swin‑Transformer的图像超分辨率方法及装置,涉及图像重建领域,该方法包括:获取待重建的低分辨率图像及其对应的梯度图;构建基于交叉注意力机制与Swin‑Transformer的图像超分辨率模型并训练,得到经训练的图像超分辨率模型;将待重建的低分辨率图像输入经训练的图像超分辨率模型,经训练的图像超分辨率模型包括SR分支和梯度分支,SR分支和梯度分支中分别采用浅层特征提取模块提取低分辨率图像及其对应的梯度图的浅层特征,通过全局深层特征提取模块将浅层特征进行融合,得到深层特征,并输入图像重建模块,重建得到高分辨率图像,解决
-
公开(公告)号:CN113554084B
公开(公告)日:2024-03-01
申请号:CN202110806449.7
申请日:2021-07-16
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司 , 星宸科技股份有限公司
IPC: G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/082
Abstract: 本发明实例公开了一种基于剪枝和轻量卷积的车辆再辨识模型压缩方法及系统,对待压缩的车辆再辨识模型的骨干网络进行预训练,对预训练完毕的骨干网络进行剪枝,并通过重训练恢复精度,对车辆再辨识模型中特征金字塔模块进行轻量化卷积设计,将紧凑的骨干网络与轻量化的特征金字塔模块结合,骨干网络提取特征后,特征金字塔模块进行特征融合,得到基于特征金字塔联合表示的轻量化车辆再辨识模型。本发明以复杂高性能的车辆再辨识模型作为输入模型,其骨干网络中重要性较低的卷积核被自动选择和剪枝,并改进其特征金字塔模块中的卷积方式,有效降低参数量和计算量,产生精度相当但较为紧凑的模型。
-
公开(公告)号:CN117373066A
公开(公告)日:2024-01-09
申请号:CN202311667337.3
申请日:2023-12-07
Applicant: 华侨大学
Abstract: 本发明公开了一种基于云边搜索联邦深度学习方法的行人再辨识方法及系统,涉及机器学习技术领域,方法包括以下步骤:S1,云端初始化全局深度网络模型,S2,云端将全局深度网络模型下发给边缘设备;S3,边缘设备利用个性化初始化函数构建总体优化目标函数,进行边缘深度网络模型训练;S4,云端对边缘深度网络模型权重参数进行加权平均聚合以更新云端全局深度网络模型;S5,重复S2至S4至最大次数,将最后一次生成的云端全局深度网络模型作为行人再辨识模型;S6,利用行人再辨识模型实现行人再辨识。本发明在保护数据隐私的前提下,让各个边缘设备根据本地数据特性个性化初始化自身网络,提升联邦学习中边缘深度网络和云端全局深度网络模型的性能。
-
-
-
-
-
-
-
-
-