基于左右分和式轻量卷积神经网络的裂缝分割方法及装置

    公开(公告)号:CN116777926A

    公开(公告)日:2023-09-19

    申请号:CN202311053453.6

    申请日:2023-08-21

    Applicant: 华侨大学

    Abstract: 本发明涉及图像分割领域,公开了基于左右分和式轻量卷积神经网络的裂缝分割方法及装置,方法包含以下步骤:S1,原始裂缝图片输入到左右分和式轻量卷积神经网络;S2,所述左分式结构输出特征映射#imgabs0#;S3,所述右分式结构输出特征映射#imgabs1#;S4,第i层神经构件融合左分式结构的输出特征映射#imgabs2#与右分式结构的输出特征映射#imgabs3#,输出融合特征#imgabs4#,作为下一层神经结构的输入特征映射#imgabs5#;最后一层神经构件输出的融合特征#imgabs6#作为最终输出,表达裂缝语义分割特征。本发明的左分式采用卷积与最大池化层运算,右分式采用轻量异质卷积与平均池化层运算,将左右两个分式的输出特征相加,既增强了左右分式特征学习的互补性,又实现了网络轻量化。

Patent Agency Ranking