-
公开(公告)号:CN112216762B
公开(公告)日:2024-08-27
申请号:CN202011155888.8
申请日:2020-10-26
Applicant: 华中科技大学
IPC: H01L31/115 , H01L31/0236 , H01L31/0216 , H01L31/18 , H01Q15/00 , H01Q15/10
Abstract: 本发明公开了一种基于超表面光学天线的太赫兹信号探测器及其制备方法,包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;其中,超表面光学天线层宽度为2~10mm,包括微米基元以及多个平面金属纳尖单元;微米基元为微米结构,形状为多边形;金属纳尖单元分布在微米基元各个边的内侧或外侧,对于入射的太赫兹信号具有局域表面等离激元特性。如此,由于纳尖单元对入射的太赫兹信号具有极强的局域表面等离激元感应能力,一旦与对应的太赫兹信号产生局域表面等离激元振荡,能够在极短时间内产生极强的响应信号;同时,本发明采用微纳结构,在满足较好探测性能的前提下,大大减小了太赫兹信号探测器的成本。
-
公开(公告)号:CN112216763A
公开(公告)日:2021-01-12
申请号:CN202011155904.3
申请日:2020-10-26
Applicant: 华中科技大学
IPC: H01L31/115 , H01L31/0236 , H01L31/0216 , H01L31/18 , H01Q15/00 , H01Q15/10
Abstract: 本发明公开了一种基于超表面光学天线的太赫兹射频信号探测器及制备方法,探测器包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;超表面光学天线层宽度为2~100mm,包括分别用于探测射频S波段、C波段或X波段信号的第一金属层和探测太赫兹信号的第二金属层,由于第一金属层和第二金属层分别对射频和太赫兹信号具有极强的局域表面等离激元感应能力,一旦与对应的信号产生局域表面等离激元振荡,其响应速度属于超高速响应,能够在极短时间内产生极强的响应信号,使得探测器能够更好地分辨太赫兹射频波段的电磁信号。此外,由于超表面光学天线的制作采用纳米工艺,使得太赫兹射频信号探测器体积很小、重量很轻。
-
公开(公告)号:CN112216761A
公开(公告)日:2021-01-12
申请号:CN202011155858.7
申请日:2020-10-26
Applicant: 华中科技大学
IPC: H01L31/115 , H01L31/0236 , H01L31/0216 , H01L31/18 , H01Q15/00 , H01Q15/10
Abstract: 本发明公开了一种基于超表面光学天线的红外太赫兹信号探测器及制备方法,探测器包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;超表面光学天线层宽度为0.5~10mm,并且包括分别用于探测红外信号的第一金属层和探测太赫兹信号的第二金属层,由于第一金属层和第二金属层分别对入射的红外信号和太赫兹信号波段电磁信号具有极强的局域表面等离激元感应能力,一旦与对应的信号产生局域表面等离激元振荡,其响应速度属于超高速响应,能够在极短时间内产生极强的响应信号,使得探测器能够更好地分辨红外太赫兹波段的电磁信号。此外,由于超表面光学天线的制作采用纳米工艺,使得红外太赫兹信号探测器体积很小、重量很轻。
-
公开(公告)号:CN105739131B
公开(公告)日:2018-11-02
申请号:CN201610147940.2
申请日:2016-03-15
Applicant: 华中科技大学
IPC: G02F1/01
Abstract: 本发明公开了一种可寻址电调光反射率薄膜。包括阴极,阳极阵列,以及设置在阴极和阳极阵列间的介电层;阳极阵列由M×N元阵列分布的阳极单元构成,阳极单元由规则排列且相互连通的多个子电极构成,可寻址电调光反射率薄膜被划分为M×N元阵列分布的电调光反射率单元,阳极单元与电调光反射率单元一一对应,构成电调光反射率单元的阳极,所有电调光反射率单元共用阴极;通过阳极单元和阴极对电调光反射率单元执行独立加电操作,进而通过调变加载在电调光反射率单元上的电压信号,实现可寻址电调光反射率的控光操作。本发明具有偏振不敏感、驱控灵活、调光响应快以及反射光强变动范围大的特点。
-
公开(公告)号:CN105929567A
公开(公告)日:2016-09-07
申请号:CN201610392288.0
申请日:2016-06-03
Applicant: 华中科技大学
IPC: G02F1/01
CPC classification number: G02F1/0102 , G02F1/0121
Abstract: 本发明公开了一种双路电控纳线簇电极的电调光透射薄膜,其包括:由纳米尺度间隔的纳线簇高密度排布构成的图案化公共电极以及分布在其上端和下端的顶面阴极和底面金属纳膜阴极,顶面阴极和图案化公共电极均由透光的纳米厚度的同材质膜制成,底面金属纳膜阴极由纳米厚度的金属膜制成;顶面阴极和图案化公共电极以及图案化公共电极与底面金属纳膜阴极间均填充有纳米厚度的同材质光学介质材料。本发明双路电控纳线簇电极的电调光透射薄膜,可对入射光波的透射行为执行精细电控调变,具有适用于宽谱域及较强光束、偏振不敏感、调光响应快的特点。
-
公开(公告)号:CN105866982A
公开(公告)日:2016-08-17
申请号:CN201610353247.0
申请日:2016-05-25
Applicant: 华中科技大学
IPC: G02F1/01
CPC classification number: G02F1/0121
Abstract: 本发明公开了一种基于金属纳尖阵电极的电调透射光薄膜,其包括:由纳米尺度间隔的纳尖高密度排布构成的一层纳米厚度的金属纳尖阵阴极和一层纳米厚度的平面阳极,该阳极由透光的纳米厚度的金属氧化物导电膜制成,阴阳电极间填充有由纳米厚度的透明光学介质材料制成的电隔离膜;在加电态下,金属纳尖阵阴极上可自由移动的电子被电极间所激励的电场驱控,向纳尖顶聚集,纳尖底部及相邻尖端间的平坦区域上的自由电子分布密度因部分甚至绝大多数自由电子被抽走而减少甚至急剧降低,对应于有自由电子密集分布的各尖顶的光透过率将减弱。本发明可对光透过率执行电控调变,具有适用于较宽谱域及较强光束、偏振不敏感、驱控灵活以及调光响应快的特点。
-
公开(公告)号:CN112259633B
公开(公告)日:2024-11-19
申请号:CN202011157075.2
申请日:2020-10-26
Applicant: 华中科技大学
IPC: H01L31/115 , H01L31/0236 , H01L31/0216 , H01L31/18 , H01Q15/00 , H01Q15/10
Abstract: 本发明公开了一种基于超表面光学天线的红外射频信号探测器及其制备方法,包括自下而上依次设置的衬底、掺杂层和二氧化硅层,制作于掺杂层之上与掺杂层形成肖特基接触的超表面光学天线层,制作于掺杂层之上与掺杂层形成欧姆接触的欧姆电极,以及位于二氧化硅层的上表面的肖特基电极和普通电极;超表面光学天线层是由多个彼此间隔的金属层组成的阵列结构,金属层包括第一金属层和第二金属层,第一金属层为宽度为0.5~5mm具有周期性纳尖结构的金属纳尖阵列,第二金属层为宽度为5~100mm的金属阵列,由周期性排列的微米基元构成;超表面光学天线层对入射的红外、射频S、C或X波段的信号具有局域表面等离激元效应,能够以较小的体积完成响应速度较快的信号探测。
-
公开(公告)号:CN112216761B
公开(公告)日:2024-10-11
申请号:CN202011155858.7
申请日:2020-10-26
Applicant: 华中科技大学
IPC: H01L31/115 , H01L31/0236 , H01L31/0216 , H01L31/18 , H01Q15/00 , H01Q15/10
Abstract: 本发明公开了一种基于超表面光学天线的红外太赫兹信号探测器及制备方法,探测器包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;超表面光学天线层宽度为0.5~10mm,并且包括分别用于探测红外信号的第一金属层和探测太赫兹信号的第二金属层,由于第一金属层和第二金属层分别对入射的红外信号和太赫兹信号波段电磁信号具有极强的局域表面等离激元感应能力,一旦与对应的信号产生局域表面等离激元振荡,其响应速度属于超高速响应,能够在极短时间内产生极强的响应信号,使得探测器能够更好地分辨红外太赫兹波段的电磁信号。此外,由于超表面光学天线的制作采用纳米工艺,使得红外太赫兹信号探测器体积很小、重量很轻。
-
公开(公告)号:CN112216764A
公开(公告)日:2021-01-12
申请号:CN202011155911.3
申请日:2020-10-26
Applicant: 华中科技大学
IPC: H01L31/115 , H01L31/0216 , H01L31/0236 , H01L31/18 , H01Q15/00 , H01Q15/10
Abstract: 本发明公开了一种基于超表面光学天线的超宽谱红外信号探测器及制备方法,属于信号探测技术领域,包括衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;其中,超表面光学天线层由一个宽度为0.5~5mm的金属纳尖阵列构成,金属纳尖阵列为具有周期性纳尖结构的金属层,对入射的电磁波具有极强的局域表面等离激元感应能力,可以与对应的红外信号产生局域表面等离激元振荡,其响应速度较高,属于超高速响应,能够在极短时间内产生极强的响应信号,从而快速探测波段为1~70um的红外信号。另外,本发明所提供的探测器尺寸为毫米级或亚毫米级,具有高灵敏、高速和微型化特性,可以以较小的体积实现响应速度较快的超宽谱红外信号的探测。
-
公开(公告)号:CN105810704A
公开(公告)日:2016-07-27
申请号:CN201610145799.2
申请日:2016-03-15
Applicant: 华中科技大学
IPC: H01L27/146 , G01J5/20
CPC classification number: H01L27/146 , G01J5/20 , G01J2005/0077 , G01J2005/204
Abstract: 本发明公开了一种广谱成像探测芯片。包括热辐射结构和光敏阵列。广谱入射光波进入热辐射结构后,在纳尖表面激励产生等离激元,驱动图形化金属膜中的自由电子向纳尖产生振荡性集聚,纳尖收集的自由电子与等离激元驱控下涌入的自由电子相叠合,产生压缩性脉动,使电子急剧升温并向周围空域发射主要成分为可见光的热电磁辐射,光敏阵列将热电磁辐射转换为电信号,经预处理后得到电子图像数据并输出。本发明能将广谱入射光波基于压缩在纳空间中的高温电子运动实现二次可见光辐射进而执行光电转换与成图操作,具有波谱适用范围宽、光电灵敏度高、光电响应快以及成本相对低廉的特点。
-
-
-
-
-
-
-
-
-