-
公开(公告)号:CN114914454A
公开(公告)日:2022-08-16
申请号:CN202210764790.5
申请日:2022-07-01
Applicant: 北京理工大学重庆创新中心
IPC: H01M4/66 , H01M10/052
Abstract: 本发明公开了一种高熵合金集流体及其制备方法和应用,所述高熵合金集流体采用3D打印的方法制成,所述高熵合金集流体的金属元素选自Cr、Mn、Co、In、Ti、Sn、Cu、Fe、Zn、Mg、Al、Ni、Au、Ag、Ga中的5种及5种以上,在高熵合金集流体中,各金属元素的原子百分比相等,且各金属元素的原子百分比均不超过20%。本发明使用高熵合金集流体替代现有的铜箔集流体,在满足无负极锂金属电池相关要求的同时,高熵合金集流体能够有效调控锂的沉积,减少或避免了锂枝晶的形成,克服了现有无负极锂金属所存在的不足;同时,通过对制备工艺的改进,能够在低能耗、低成本的情况下制备得到质量稳定的高熵合金集流体,商业化应用潜力大。
-
公开(公告)号:CN114792804A
公开(公告)日:2022-07-26
申请号:CN202210456509.1
申请日:2022-04-28
Applicant: 北京理工大学重庆创新中心
IPC: H01M4/62 , H01M4/04 , H01M4/131 , H01M4/136 , H01M4/1391 , H01M4/1397 , H01M10/0525 , B33Y10/00 , B33Y70/00 , B33Y70/10 , B33Y80/00
Abstract: 本发明公开了一种3D打印正极墨水及应用其的正极成型方法和应用,以质量百分数计,所述正极墨水包括以下组分:正极活性材料40-85%、粘结剂2-15%、溶剂5-30%,所述粘结剂选自聚乙烯基吡咯烷酮、聚乙二醇、羟丙基纤维素、羟乙基纤维素、羧基甲基纤维素、聚丙烯酸、聚丙烯酸酯中的一种或几种。本发明通过选用一些特定的粘结剂材料,在满足3D打印成型要求的同时,有效减少了粘结剂的用量,本发明的粘结剂既可以发挥出粘结作用,其热处理碳化后还能够发挥出导电作用,提高了正极活性材料的占比量,获得的锂离子电池具有较高的电化学性能,克服了现有3D打印技术制备锂离子电池所存在的不足。
-
公开(公告)号:CN103631925A
公开(公告)日:2014-03-12
申请号:CN201310646585.X
申请日:2013-12-04
Applicant: 北京理工大学
IPC: G06F17/30
CPC classification number: G05B19/401
Abstract: 本发明涉及一种机械加工设备的快速分组检索方法,属于加工制造领域。该方法提出把加工特征从类型、尺寸以及加工精度等三个维度作为制造设备的加工特征向量来描述设备,然后根据制造设备的特征向量描述,改进了已有设备分组的扩展模糊C-均值算法,构建了基于加工特征向量的设备分组算法,根据最优设备分组结果能够快速检索相应的制造设备。制造设备快速分组及检索是可制造性评价、工艺规划和生产计划制定等的重要环节。针对目前设备快速分组及检索算法效率低下的现状,提出了基于设备加工特征向量的分组方法来提高算法的效率。
-
公开(公告)号:CN119905672A
公开(公告)日:2025-04-29
申请号:CN202510046711.0
申请日:2025-01-13
Applicant: 北京理工大学重庆创新中心
IPC: H01M10/058 , H01M10/0565 , H01M10/0525 , H01M4/139 , H01M4/04 , H01M4/66 , H01M4/74 , B33Y80/00 , B33Y70/10
Abstract: 本发明公开了一种电极/电解质一体化器件、制备方法及其应用,包括如下步骤:A、通过3D打印的方式打印得到具有三维网状结构的集流体前驱体,真空干燥得到集流体;B、制备3D打印用的电极墨水、快离子导体墨水以及固态电解质墨水;C、将集流体浸渍于电极墨水中,浸渍后取出,加压挤出集流体上多余的电极墨水,干燥固化;D、在集流体上打印得到电极层,干燥固化;E、在电极层上打印得到快离子导体层,干燥固化;F、在快离子导体层上打印得到固态电解质层,干燥固化,即得。本发明的电极/电解质一体化器件,电解质和极片界面固固接触稳定性良好,显著降低了界面阻抗,同时开发出了网状导电集流体电极内置技术,提升了电池的电化学性能。
-
公开(公告)号:CN114284472B
公开(公告)日:2023-11-03
申请号:CN202111588795.9
申请日:2021-12-23
Applicant: 北京理工大学重庆创新中心
IPC: H01M4/139 , H01M4/38 , H01M4/485 , H01M4/505 , H01M4/525 , H01M10/0525 , C01B33/20 , C01B33/26 , C01B33/32 , C01G53/00
Abstract: 本发明公开了一种具有超导修饰层的单晶富锂材料及其制备方法和应用,所述单晶富锂材料的形貌为单晶一次颗粒,其内层结构和外层结构,所述内层结构由化学通式为xLi2MnO3·(1-x)LiMO2单晶颗粒构成,所述外层结构由化学式为Li4SiO4、Li2ZnSiO4、Li2MgSiO4、Li2CoSiO4、Li2NiSiO4、Li2SrSiO4或LiAlSiO4的超导修饰层,所述超导修饰层包覆所述xLi2MnO3·(1-x)LiMO2单晶颗粒。本发明通过一步煅烧的方式在合成单晶富锂材料的同时,原位构建表面超导修饰层,超导修饰层与富锂材料形成了一体化坚固的接触界面,同时创新性采用了含锂硅酸盐超离子导体材料来提高富锂材料的循环性能和倍率性能,本发明的单晶富锂材料压实密度高,循环寿命长、倍率性能优良,其制备方法工艺简单、产品形貌一致性好。
-
公开(公告)号:CN114914454B
公开(公告)日:2023-05-26
申请号:CN202210764790.5
申请日:2022-07-01
Applicant: 北京理工大学重庆创新中心
IPC: H01M4/66 , H01M10/052
Abstract: 本发明公开了一种高熵合金集流体及其制备方法和应用,所述高熵合金集流体采用3D打印的方法制成,所述高熵合金集流体的金属元素选自Cr、Mn、Co、In、Ti、Sn、Cu、Fe、Zn、Mg、Al、Ni、Au、Ag、Ga中的5种及5种以上,在高熵合金集流体中,各金属元素的原子百分比相等,且各金属元素的原子百分比均不超过20%。本发明使用高熵合金集流体替代现有的铜箔集流体,在满足无负极锂金属电池相关要求的同时,高熵合金集流体能够有效调控锂的沉积,减少或避免了锂枝晶的形成,克服了现有无负极锂金属所存在的不足;同时,通过对制备工艺的改进,能够在低能耗、低成本的情况下制备得到质量稳定的高熵合金集流体,商业化应用潜力大。
-
公开(公告)号:CN113178639B
公开(公告)日:2022-12-20
申请号:CN202110460173.1
申请日:2021-04-27
Applicant: 北京理工大学重庆创新中心
IPC: H01M10/613 , H01M10/6554 , H01M10/6556 , H01M10/6568
Abstract: 本发明公开了一种分形网络流道冷却板,涉及电子元件冷却技术领域,它包括壳体,其内部开设有至少一个且遍布壳体的流道组,其包括相互连通的入液主流道和第一支流道、连通于第一支流道的第二支流道和第三支流道、连通于第二支流道的第一出液主流道、连通于第三支流道的第二出液主流道。冷却液由两个入口进入壳体内部,并沿第一支流道进行汇流,再分别沿第二支流道、第三支流道分流,并分别沿第一出液主流道、第二出液主流道输出。支流道将冷却液的热点分散在第一支流道、第一出液主流道和第二出液主流道内,没有局部较大的集中现象,使得整个冷却板的温度较均匀,进而使得其对应的热力元件的温度均匀。
-
公开(公告)号:CN115051029A
公开(公告)日:2022-09-13
申请号:CN202210770782.1
申请日:2022-06-30
Applicant: 北京理工大学
IPC: H01M10/0565 , H01M10/0525 , H01M10/058
Abstract: 本发明涉及一种对锂负极稳定的耐高压凝胶电解质及其制备方法,属于凝胶聚合物电解质技术领域。所述电解质由PVDF‑HFP膜和电解液组成;所述电解液由锂盐I、酯类有机溶剂、醚类有机溶剂和锂盐II组成;所述酯类有机溶剂中由DEC和FEC组成或由EMC和FEC组成;所述醚类有机溶剂为18‑冠醚‑6、15‑冠醚‑5或12‑冠醚‑4;所述锂盐II为硝酸锂,锂盐I与锂盐II不同。将醚类有机溶剂和锂盐II加入到由锂盐I和酯类有机溶剂组成的混合溶液中,加热搅拌得到电解液,将PVDF‑HFP膜浸泡于电解液中,得到所述电解质,其与高镍正极和锂负极的界面相容性均较好,能抑制锂枝晶生长,提升电池的循环性能。
-
公开(公告)号:CN106410182B
公开(公告)日:2019-07-02
申请号:CN201610913493.7
申请日:2016-10-20
Applicant: 北京理工大学
IPC: H01M4/505 , H01M4/525 , H01M4/1391 , H01M10/0525
Abstract: 本发明涉及一种高压实密度微米级单晶三元正极材料的制备方法,属于锂离子电池材料技术领域。先将三元前驱体球磨粉碎,再与添加剂混合均匀并进行高温热处理,得到物质A;物质A与锂盐在球磨罐中混合均匀后,再置于含氧的气氛中煅烧,自然降温,得到本发明所述三元正极材料。本发明所述的制备方法工艺简单,产品形貌一致性好,适合大规模生产;所制备的三元正极材料具有微米级单晶形貌、压实密度大以及良好的电化学性能。
-
公开(公告)号:CN105932321A
公开(公告)日:2016-09-07
申请号:CN201610443127.X
申请日:2016-06-20
Applicant: 北京理工大学
IPC: H01M10/0525 , H01M4/505 , H01M4/525 , H01M4/48 , H01M4/38
Abstract: 本发明涉及一种掺杂型微米级单晶三元正极材料及其制备方法,属于锂离子电池材料技术领域。本发明所述三元正极材料的颗粒粒径为1~8μm、压实密度为3.6~4.3g/cm3,并且过掺杂适量的金属离子和氟离子,明显改善了三元正极材料的循环性能。该三元正极材料的制备如下:先将三元前驱体在球磨罐中粉碎,然后再将锂盐、含M的化合物以及氟化物加入球磨罐中,混合均匀后,再置于氧气气氛中,在800~1200℃下恒温煅烧10~20h,得到所述三元正极材料。
-
-
-
-
-
-
-
-
-