-
公开(公告)号:CN116450632B
公开(公告)日:2023-12-19
申请号:CN202310421521.3
申请日:2023-04-18
Applicant: 北京卫星信息工程研究所
IPC: G06F16/215 , G06F16/29
Abstract: 本发明涉及一种地理样本数据质量评估方法、设备及存储介质,地理样本数据质量评估方法包括:分析多应用层级的地理人工智能样本数据的质量特征,建立多应用层级的样本数据质量指标体系;确定进行质量评估的地理人工智能样本数据集的特征与质量规范;确定进行质量评估的地理人工智能样本数据集的质量评估规范;执行地理人工智能样本数据质量评估,获取质量评估结果;基于质量评估结果,生成地理人工智能样本数据质量评估报告。本发明,能够满足像素级、目标级、场景级多应用层级的地理人工智能样本数据的质量评估需求,为地理人工智能样本数据的质量评估提供系统性参考,从而帮助提高样本数据的可靠性。
-
公开(公告)号:CN116416136B
公开(公告)日:2023-12-19
申请号:CN202310408459.4
申请日:2023-04-17
Applicant: 北京卫星信息工程研究所
IPC: G06T3/40 , G06T5/50 , G06T7/00 , G06V20/13 , G06V10/26 , G06V10/82 , G06V10/42 , G06V10/44 , G06V10/80 , G06N3/0464 , G06N3/045
Abstract: 本发明涉及一种可见光遥感图像舰船目标检测的数据扩增方法、设备及存储介质,获取原始可见光遥感图像数据集及其标注文件;确定需要进行扩增的舰船类别;引入语义评估模块,得到能够扩增的合理区域;依据原始可见光遥感图像数据集的标注文件,提取原始各类舰船切片样本;对原始各类舰船切片样本进行超分辨率重建,构建舰船扩增样例库;将原始可见光遥感图像和舰船扩增样例库进行图像合成处理,得到扩增后的图像;对扩增后的图像进行质量评估,筛选替换原始图像。本发明,实现了舰船少数类的自动扩增,解决因训练集类间不平衡导致训练出来模型偏向于多数类,而对少数类识别精度下降(56)对比文件Nan Mo et al.Improved Faster RCNNBased on Feature Amplification andOversampling Data Augmentation forOriented Vehicle Detection in AerialImages.remote sensing.2020,第1-7页.Yuzhu Ji et al.LGCNet: A local-to-global context-aware feature augmentationnetwork for salient objectdetection.ELSEVIER: InformationSciences.2022,第439-440页.
-
公开(公告)号:CN116403122B
公开(公告)日:2023-12-19
申请号:CN202310403526.3
申请日:2023-04-14
Applicant: 北京卫星信息工程研究所
IPC: G06V20/13 , G06V10/764 , G06V10/25
Abstract: 本发明涉及一种无锚框定向目标检测方法,包括:S100,获取至少一幅包含待检测目标的卫星遥感图像;S200,以Resnet101为主干网络,提取所述卫星遥感图像的降采样4、8、16、32倍的特征C2、C3、C4、C5;S300,根据C2、C3、C4、C5构建FPN网络;S400,将所述FPN网络中的上采样和横向连接,替换为特征选择与对齐,对C2、C3、C4、C5进行融合处理,得到多尺度特征P3、P4、P5、P6、P7;S500,采用旋转边界框进行目标检测;S600,对目标检测算法进行优化,驱动目标检测网络在训练过程中学习目标的遥感方向信息。本发明可提高遥感目标检测对空间尺度大小与方向任意的目标的检测能力。
-
公开(公告)号:CN115908908B
公开(公告)日:2023-09-15
申请号:CN202211425887.X
申请日:2022-11-14
Applicant: 北京卫星信息工程研究所
IPC: G06V10/764 , G06V20/10 , G06V10/82 , G06V10/22 , G06V10/40 , G06V10/774 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08
Abstract: 本发明涉及一种基于图注意力网络的遥感图像聚集型目标识别方法及装置,所述方法包括:构建并训练基于Oriented R‑CNN的目标候选区域检测定位模型;采用训练好的基于Oriented R‑CNN的目标候选区域检测定位模型检测遥感图像中目标的候选区域,并提取对应的特征,根据所述候选区域的位置关系构建图结构数据集;将所述候选区域的位置编码引入图注意力网络,构建图节点分类网络模型;利用所述图结构数据集训练所述图节点分类网络模型,对遥感图像中目标的候选区域的特征进行聚合和更新,实现目标的分类。本发明可以对遥感图像中尺寸小、外观模糊的聚集型目标进行准确识别并提高识别精度。
-
公开(公告)号:CN116563680A
公开(公告)日:2023-08-08
申请号:CN202310493846.2
申请日:2023-05-05
Applicant: 北京卫星信息工程研究所
IPC: G06V10/80 , G06V10/52 , G06V10/764 , G06V10/774 , G06V10/82 , G06V20/10
Abstract: 本发明涉及一种基于高斯混合模型的遥感图像特征融合方法、电子设备,通过特征提取主干网络提取输入遥感图像特征,得到不同层级位置的特征图;构建特征融合网络并对不同层级位置的特征图进行融合,获得遥感图像目标的多特征图;构建多个高斯混合模型拟合多特征图,获得高斯混合模型的参数;对多个高斯混合模型进行加权平均融合,利用融合后的高斯混合模型生成数据并与原始特征图拼接;利用融合特征图输入目标检测网络的检测头,进行遥感图像检测,计算分类、位置预测损失;重复执行上述步骤,训练检测模型;利用检测模型进行检测。本发明,提升了模型分类和定位出遥感图像中的感兴趣目标的能力,提高遥感图像目标定位准确性,提高模型检测能力。
-
公开(公告)号:CN116403122A
公开(公告)日:2023-07-07
申请号:CN202310403526.3
申请日:2023-04-14
Applicant: 北京卫星信息工程研究所
IPC: G06V20/13 , G06V10/764 , G06V10/25
Abstract: 本发明涉及一种无锚框定向目标检测方法,包括:S100,获取至少一幅包含待检测目标的卫星遥感图像;S200,以Resnet101为主干网络,提取所述卫星遥感图像的降采样4、8、16、32倍的特征C2、C3、C4、C5;S300,根据C2、C3、C4、C5构建FPN网络;S400,将所述FPN网络中的上采样和横向连接,替换为特征选择与对齐,对C2、C3、C4、C5进行融合处理,得到多尺度特征P3、P4、P5、P6、P7;S500,采用旋转边界框进行目标检测;S600,对目标检测算法进行优化,驱动目标检测网络在训练过程中学习目标的遥感方向信息。本发明可提高遥感目标检测对空间尺度大小与方向任意的目标的检测能力。
-
公开(公告)号:CN116403007A
公开(公告)日:2023-07-07
申请号:CN202310390010.X
申请日:2023-04-12
Applicant: 北京卫星信息工程研究所
IPC: G06V10/74 , G06V10/62 , G06V10/82 , G06V20/10 , G06V10/766 , G06V10/764 , G06V10/80
Abstract: 本发明涉及一种基于目标向量的遥感影像变化检测方法,包括:使用向量对遥感序列影像进行样本标注;构建目标向量检测模型,将已标注的遥感序列影像输入所述目标向量检测模型进行训练;利用所述目标向量检测模型对同一区域不同时间的遥感影像中的所有目标进行检测,得到不同集合的目标向量;利用变化相似度算法计算不同集合中目标向量的相似度距离,获得目标的变化情况。通过实施本发明的上述方案,可以实现遥感影像中目标变化前后的高精度匹配和精细化的变化检测。
-
公开(公告)号:CN115908908A
公开(公告)日:2023-04-04
申请号:CN202211425887.X
申请日:2022-11-14
Applicant: 北京卫星信息工程研究所
IPC: G06V10/764 , G06V20/10 , G06V10/82 , G06V10/22 , G06V10/40 , G06V10/774 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08
Abstract: 本发明涉及一种基于图注意力网络的遥感图像聚集型目标识别方法及装置,所述方法包括:构建并训练基于Oriented R‑CNN的目标候选区域检测定位模型;采用训练好的基于Oriented R‑CNN的目标候选区域检测定位模型检测遥感图像中目标的候选区域,并提取对应的特征,根据所述候选区域的位置关系构建图结构数据集;将所述候选区域的位置编码引入图注意力网络,构建图节点分类网络模型;利用所述图结构数据集训练所述图节点分类网络模型,对遥感图像中目标的候选区域的特征进行聚合和更新,实现目标的分类。本发明可以对遥感图像中尺寸小、外观模糊的聚集型目标进行准确识别并提高识别精度。
-
公开(公告)号:CN119810429A
公开(公告)日:2025-04-11
申请号:CN202510299055.5
申请日:2025-03-13
Applicant: 北京卫星信息工程研究所
IPC: G06V10/25 , G06V20/10 , G06V20/70 , G06V10/44 , G06V10/52 , G06V10/42 , G06V10/77 , G06V10/80 , G06V10/764 , G06V10/766 , G06V10/82 , G06N3/0464 , G06N3/045 , G06N3/09 , G06N3/048
Abstract: 本发明涉及一种基于层级知识引导的可见光遥感图像目标细粒度检测方法,包括:获取可见光遥感图像数据,构建多语义层级的标签体系;提取可见光遥感图像特征,通过RPN网络生成多尺度感兴趣区域特征;对多尺度的感兴趣区域特征采用多支路提取多层级的语义特征;对多层级的语义特征进行相邻层级的局部‑全局特征融合,得到增强特征;使用多个层级标签监督多层级分类,在第一语义层级监督回归;在推理阶段精简网络结构,提高推理速度。本发明,针对可见光遥感图像中的多类目标,实现了目标细粒度检测过程中的层级关系及信息的注入,结合多层特征融合,增强网络对目标的共有特征和细粒度特征的提取和学习。
-
公开(公告)号:CN118736431A
公开(公告)日:2024-10-01
申请号:CN202410739940.6
申请日:2024-06-07
Applicant: 北京卫星信息工程研究所
IPC: G06V20/13 , G06T5/50 , G06T3/4053 , G06V10/764 , G06V10/774 , G06V10/80 , G06F17/16 , G06F17/18 , G06N3/0464 , G06N3/0455 , G06N3/042 , G06N3/048 , G06N3/084
Abstract: 本发明涉及一种基于遥感图像变化检测的场景态势生成方法,包括:获取同一区域不同时相的两幅高分辨率卫星遥感影像,并进行预处理;构建基于Swin Transformer的双分支U‑net变化检测网络,对不同时相的两幅所述高分辨率卫星遥感影像进行变化检测;根据变化检测网络输出的变化地物的边界信息对空间关系建模,构建图卷积神经网络,生成边集和邻接矩阵;使用人工标注的遥感变化检测数据集,对图卷积神经网络进行训练,得到基于遥感图像变化检测的场景态势生成模型;利用训练好的基于遥感图像变化检测的场景态势生成模型,对测试集中的数据进行测试,得到遥感变化图像的态势。本发明,充分利用双时相遥感图像的丰富语义信息,实现变化场景态势的自动生成。
-
-
-
-
-
-
-
-
-