一种基于ICS-SVM分析用户转发行为的预测方法及系统

    公开(公告)号:CN109829504A

    公开(公告)日:2019-05-31

    申请号:CN201910114885.0

    申请日:2019-02-14

    Abstract: 本发明请求保护一种基于ICS-SVM分析用户转发行为的预测方法及系统,属于社交网络分析领域。首先获取数据集。其次,定义影响因素。利用从真实社交网络-腾讯微博中获取的数据,提取用户内部影响机制和外界影响机制。优化CS算法。根据推导公式,使搜索步长能够自适应的动态调整。针对用户的转发行为随时间变化的特点,本发明利用时间切片的方法,并利用ICS-SVM模型预测用户转发行为,这样能够弥补传统布谷鸟算法优化SVM参数的缺点,且提高传统支持向量机的预测精度。本发明能够更加精确地预测用户转发行为,并分析热点话题的传播趋势。

    基于车辆轨迹语义分析和深度信念网络的轨迹预测方法

    公开(公告)号:CN109034448A

    公开(公告)日:2018-12-18

    申请号:CN201810613127.9

    申请日:2018-06-14

    CPC classification number: G06Q10/04 G06F17/18 G06Q50/26 G08G1/0104

    Abstract: 本发明请求保护一种基于车辆轨迹语义分析和深度信念网络的轨迹预测方法,属于智能交通分析领域。首先,获取数据源。其次,交通卡口关联性分析。根据轨迹集中交通卡口的上下文关系,使用统计概率模型构建关联空间,按照关联空间中的相对位置度量交通卡口之间的关联性;第三,根据新的轨迹时空关联向量集挖掘轨迹中的用户行车模式,训练DBN网络形成特征提取模型;第四,根据轨迹特征建立回归预测模型,利用处理后的交通轨迹特征集,对未来轨迹进行回归预测,同时采用权重聚类对结果进行优化,最终实现对车辆轨迹的精确预测。本发明有效改善了实际交通环境中复杂的路网关系对轨迹预测的负面影响,提高了预测效率。

    一种基于高维路网和循环神经网络的交通轨迹预测方法

    公开(公告)号:CN108629978A

    公开(公告)日:2018-10-09

    申请号:CN201810581380.0

    申请日:2018-06-07

    CPC classification number: G08G1/0137 G06Q10/04 G06Q50/26

    Abstract: 本发明请求保护一种基于高维路网和循环神经网络的交通轨迹预测方法,属于智能交通分析领域。首先,获取数据源,提取相关属性并对轨迹数据集根据车速阈值进行筛选。然后,通过近邻规则对轨迹数据进行二次筛选,获取完整的格式化轨迹数据。建立路网模型,通过时间窗口对轨迹数据集进行提取,获取目标卡口上下文关系,然后利用嵌入算法将目标卡口编码嵌入高维空间,完成二维平面路网到高位空间路网的映射,在高维空间中,卡口之间不再包含复杂的拓扑关系,使用高维相似度可以度量卡口之间在轨迹数据中的角色相似度。最后,使用双向循环神经网络对轨迹矩阵进行双向学习预测,结合前后向信息对轨迹数据进行学习预测。本发明提高了预测效率。

Patent Agency Ranking