-
公开(公告)号:CN111314353A
公开(公告)日:2020-06-19
申请号:CN202010103246.7
申请日:2020-02-19
Applicant: 重庆邮电大学
Abstract: 本发明涉及网络入侵检测技术领域,特别涉及一种基于混合采样的网络入侵检测方法及系统,方法包括将网络入侵历史数据集中的符号属性转换为数字属性;将网络入侵历史数据集归一化至区间[0,1];利用混合采样算法对网络入侵历史数据集进行采样,得到每个类别平衡的训练集;利用获得的训练集训练BP神经网络分类器;将实时的网络入侵数据输入训练好的BP神经网络分类器,BP神经网络分类器输出该实时的网络入侵数据的类别;本发明减少了多数类样本的舍弃,从而减少了对构建分类器有价值的信息的损失;相比基于SMOTE过采样的入侵检测技术,减少了生成少数类新样本时引入的噪音,因此该算法对不平衡数据有更好的分类性能。