-
公开(公告)号:CN111079604A
公开(公告)日:2020-04-28
申请号:CN201911243920.5
申请日:2019-12-06
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Inventor: 丁忆 , 李朋龙 , 罗鼎 , 张泽烈 , 李晓龙 , 肖禾 , 马泽忠 , 段松江 , 刘金龙 , 王亚林 , 吴凤敏 , 钱进 , 刘朝晖 , 曾远文 , 魏文杰 , 林熙 , 范文武 , 刘建 , 黄印 , 卢建洪
Abstract: 本发明公开了一种面向大尺度遥感图像的微小目标快速检测方法,包括步骤:利用轻量级的残差结构构建Tiny-Net模块,并对输入的遥感图像进行特征图提取;搭建全局注意力模块;在全局注意力模块后依次连接分类器与检测器,并利用分类器检测当前输入图像块中的目标;对检测出的目标采用k-means聚类方法得到k个尺度的先验框;使用区域提案网络得到提案区域,并采用位置敏感的ROI池化对提案区域进行池化;训练网络,并利用训练好的网络对新输入的遥感图像进行微小目标的精确检测定位。其显著效果是:实现了快速精确的检测大尺度遥感图像中的微小目标,使得对大尺度遥感图像的目标实时检测成为可能。
-
公开(公告)号:CN110348383A
公开(公告)日:2019-10-18
申请号:CN201910625253.0
申请日:2019-07-11
Inventor: 丁忆 , 李朋龙 , 胡翔云 , 曾安明 , 张泽烈 , 胡艳 , 徐永书 , 魏域君 , 李晓龙 , 张觅 , 罗鼎 , 陈静 , 郑中 , 刘朝晖 , 王亚林 , 范文武 , 王小攀 , 连蓉 , 林熙 , 谭攀
Abstract: 本发明公开了一种基于卷积神经网络回归的道路中心线和双线提取方法,包括如下步骤:利用已训练卷积神经网络,预测出待提取的高分辨率遥感影像的道路中心线距离图和道路宽度图;利用非极小值抑制算法,结合道路中心线距离图提取出道路中心线;根据提取出的道路中心线,结合道路宽度图提取出道路双线;选取道路中心线上的像素点作为初始道路种子点,计算初始道路种子点所在的道路方向,利用道路追踪算法重建道路网络的拓扑结构,输出道路网络提取结果。该方法通过端对端的训练,直接从训练数据中学习到易于分类的特征,不需要任何后处理来提取道路中线和边线,泛化能力更强,道路提取精度高,细小道路提取效果较好。
-
公开(公告)号:CN112862774B
公开(公告)日:2021-12-07
申请号:CN202110140476.5
申请日:2021-02-02
Applicant: 重庆市地理信息和遥感应用中心 , 武汉大学
Abstract: 本发明公开了一种遥感影像建筑物精确分割方法,包括步骤:构建包括特征提取模块、空洞卷积模块、注意力模块、上采样模块与卷积预测模块的建筑物提取网络;基于训练样本集,采用Dice Loss与BCE Loss相结合的多尺度复合损失函数,对构建的建筑物提取网络进行训练;将待提取的遥感影像输入训练好的建筑物提取网络,得到建筑物提取结果。其显著效果是:特征学习,泛化能力强;网络复杂度低,易于训练;建筑物提取精度高。
-
公开(公告)号:CN112862774A
公开(公告)日:2021-05-28
申请号:CN202110140476.5
申请日:2021-02-02
Applicant: 重庆市地理信息和遥感应用中心 , 武汉大学
Abstract: 本发明公开了一种遥感影像建筑物精确分割方法,包括步骤:构建包括特征提取模块、空洞卷积模块、注意力模块、上采样模块与卷积预测模块的建筑物提取网络;基于训练样本集,采用Dice Loss与BCE Loss相结合的多尺度复合损失函数,对构建的建筑物提取网络进行训练;将待提取的遥感影像输入训练好的建筑物提取网络,得到建筑物提取结果。其显著效果是:特征学习,泛化能力强;网络复杂度低,易于训练;建筑物提取精度高。
-
-
-