-
公开(公告)号:CN116643278A
公开(公告)日:2023-08-25
申请号:CN202310778973.7
申请日:2023-06-29
Applicant: 西安电子科技大学杭州研究院 , 西安电子科技大学
IPC: G01S13/90
Abstract: 一种基于距离‑方位像重建的InISAR成像散射中心提取方法,包括以下步骤;在二维ISAR图像中通过将目标散射点四周不含目标的区域置零实现预处理;对不同距离单元和方位单元的自相关矩阵进行特征值分解,利用各个单元得到的最大特征值分别预重构一维距离像和一维方位像,然后,对最大特征值小于一定阈值的对应图像单元进行置零,得到了将部分噪声区域置零后的二维ISAR图像;设置阈值,认为高于阈值的距离和方位单元含有目标散射点;图像中幅值高于门限的点认为是目标散射点,分别对距离和方位向提取散射点;综合距离向和方位向来确定散射点并剔除虚假散射点。本发明具有高效提取目标弱散射点的特点,能够达到在充分保留弱散射点的同时有效减少噪声的目的。
-
公开(公告)号:CN116566524A
公开(公告)日:2023-08-08
申请号:CN202310559699.4
申请日:2023-05-18
Applicant: 西安电子科技大学杭州研究院 , 西安电子科技大学
IPC: H04B17/391 , H04B7/0413 , G06N3/08
Abstract: 本发明公开了一种基于神经网络消息传递的MIMO信号检测方法,涉及通信技术领域,包括以下步骤:S1:基站端接收到用户端发送的信号;S2:利用神经网络对MIMO系统进行建模,基于MIMO系统的信号流设计神经网络架构,设计一个深度神经网络模型模拟硬件缺陷和多用户干扰;S3:开发一种高效的基于消息传递的贝叶斯检测器MP‑NN;S4:turbo接收机的实现。本发明采用上述方法,为复杂输入输出关系的通信系统实现贝叶斯信号检测;利用神经网络对MIMO系统进行建模,基于MIMO系统的信号流设计神经网络架构,最大限度地减少神经网络层和参数的数量,用因子图表示训练后的神经网络,并利用酉近似消息传递UAMP算法设计了一种高效的基于消息传递的贝叶斯信号检测器。
-
公开(公告)号:CN114675266A
公开(公告)日:2022-06-28
申请号:CN202111340176.8
申请日:2021-11-12
Applicant: 西安电子科技大学杭州研究院 , 西安电子科技大学
Abstract: 本发明涉及雷达技术领域,具体涉及一种基于联合稀疏恢复的低复杂度InISAR三维成像方法,包括以下步骤:建立InISAR成像系统的几何结构,并根据InISAR成像系统的几何结构来建立符合JSM‑2模型的InISAR成像稀疏重建模型;按照酉变换近似消息传递UTAMP,对建立的符合JSM‑2模型的InISAR成像稀疏重建模型进行酉变换,并建立InISAR成像联合稀疏恢复的贝叶斯学习模型;构建InISAR成像联合稀疏恢复贝叶斯学习模型的因子图;根据建立的联合稀疏恢复贝叶斯学习模型的因子图,设计其中各个变量的消息更新规则;根据消息更新规则,得到三个通道的二维图像后,通过干涉处理和散射点距离测量重建目标三维图像。本发明提高了三维像的重建精度,具有更好的噪声抑制抑制能力,极大的降低了算法计算复杂度。
-
-