-
公开(公告)号:CN117876383B
公开(公告)日:2024-06-07
申请号:CN202410284089.2
申请日:2024-03-13
Applicant: 西南林业大学
IPC: G06T7/00 , G06N3/0464 , G06N3/084 , G06T7/73 , G06V10/44 , G06V10/52 , G06V10/764 , G06V10/82
Abstract: 本申请公开了一种基于yolov5l的公路表面条状裂缝检测方法,涉及图像识别领域,该方法包括:基于表面裂缝图像构建表面条状裂缝样本集;基于所述表面条状裂缝样本集对预设网络进行训练,获取裂缝检测模型;基于所述裂缝检测模型对采集到的表面图像进行检测,确定所述表面图像中的目标裂缝,所以,有效解决了相关技术中对裂缝的形状和类型有一定的假设和限制,同时需要处理图像中的噪声、阴影、纹理等干扰因素,导致表面裂缝识别的通用性以及准确性不佳的技术问题,实现了提高表面裂缝特征提取精度,统一表面病害检测标准的技术效果。
-
公开(公告)号:CN117831301A
公开(公告)日:2024-04-05
申请号:CN202410247186.4
申请日:2024-03-05
Applicant: 西南林业大学
IPC: G08G1/01 , G08G1/065 , G06Q10/04 , G06Q50/40 , G06N3/045 , G06N3/0464 , G06N3/084 , G06F18/213 , G06F18/25
Abstract: 本发明涉及一种结合三维残差卷积神经网络和时空注意力机制的交通流量预测方法,属于交通流时空数据预测领域。本发明构建了一种结合三维残差卷积神经网络和时空注意力机制的交通流量预测模型,模型采用三维残差卷积结构,用以捕获交通数据的时空依赖性特征,时空注意力模块用以捕获时空动态性特征,建立起历史数据与未来交通的直接关系,进一步提高现有方法在交通数据时空特征建模不充分的问题,提高了交通流量的预测精度,其预测结果可以缓解城市交通压力。
-
公开(公告)号:CN116894469B
公开(公告)日:2023-12-15
申请号:CN202311163761.4
申请日:2023-09-11
Applicant: 西南林业大学
Abstract: 本发明涉及深度学习技术领域,尤其涉及一种端边云计算环境中的DNN协同推理加速方法、设备及介质。根据多分支DNN的层类型和计算平台的计算资源,构建目标时延预测模型;基于目标时延预测模型,预测DNN层的执行时延;获取目标平台当前可用带宽资源和可用计算资源,并将可用带宽资源、可用计算资源、截止时延和网络类型,输入最佳退出点预测模型,预测最佳退出点;根据最佳退出点提取多分支DNN,并确定提取后的多分支DNN中的节点划分结果;根据节点划分结果,将提取后的所述多分支DNN中的各个节点,分配至节点划分结果对应的目标平台,目标平台包括终端设备、云服务器和边缘服务器中的(56)对比文件CN 115841590 A,2023.03.24CN 116187429 A,2023.05.30CN 116227558 A,2023.06.06CN 116341624 A,2023.06.27US 2021056357 A1,2021.02.25US 2021247246 A1,2021.08.12US 2021289456 A1,2021.09.16US 2022358358 A1,2022.11.10WO 2022111002 A1,2022.06.02WO 2022252713 A1,2022.12.08WO 2023091019 A1,2023.05.25刘国志等“.车辆边缘计算环境下基于深度强化学习的服务卸载方法”《.计算机集成制造系统》.2022,第28卷(第10期),第3304-3315.guozhi liu等“.An adaptive DNNinference acceleration framework withend-edge-cloud collaborative computing”.《Future Generation Computer Systems》.2023,第140卷第422-435页.Hsu TzHeng等“.A Cloud-Edge-Smart IoTArchitecture for Speeding Up theDeployment of Neural Network Models withTransfer Learning Techniques”.《Electronics》.2022,第11卷(第14期),第1-12页.Enzo Baccarelli等.“Learning-in-the-Fog(LiFo):Deep Learning Meets FogComputing for the Minimum-EnergyDistributed Early-Exit of Inference inDelay-Critical IoT Realms”《.IEEE Access》.2021,第9卷第25716-25757页.郭永安等“.基于边端协同的CNN推理加速框架”《.南京邮电大学学报(自然科学版)》.2023,第43卷(第3期),第68-77页.
-
-