一种基于生成对抗网络的图像自动文本标注方法

    公开(公告)号:CN107330444A

    公开(公告)日:2017-11-07

    申请号:CN201710396148.5

    申请日:2017-05-27

    CPC classification number: G06F17/30247 G06K9/6256

    Abstract: 本发明公开了一种基于生成对抗网络的图像自动文本标注方法,包括以下步骤:由生成器产生假的语句,同时重新构建一个判别器,将生成的语句和真实语句输入进行训练,直至判别器无法判别出真实语句和生成语句。本发明改变了CNN-RNN图像自动语句标注中产生句子生硬、死板的问题,并且使得生成的句子更为准确、自然、多样性,生成的语句可以面对现实中更为复杂的景象,更加符合人类的语言表达方式标注图像,在实际中有着更为广泛的应用。

    基于卷积神经网络的单图像去雨方法

    公开(公告)号:CN110852972B

    公开(公告)日:2022-10-18

    申请号:CN201911095524.2

    申请日:2019-11-11

    Abstract: 本发明公开了一种基于卷积神经网络的单图像去雨方法。本发明首先,我们并未使用导向滤波或者其他滤波分离图像以尽可能地保留图像的原始信息。其次,我们提出了我们的RK块来代替残差块以更高效地提取特征。最后,我们提出了特征转换连结操作来处理多尺度雨线。此外,批正则化操作假设了特征都有着相同的分布,然而不同的雨线有着不同的方向、颜色和形状,因此我们移除了网络中所有的批正则化操作。本发明的有益效果:以卷积神经网络为基础,设计一类较为简洁、高效的单步单流去雨网络模型,以便更好地修复带雨图像,同时保持修复质量和模型大小之间的平衡。

    基于卷积神经网络的单图像去雨方法

    公开(公告)号:CN110852972A

    公开(公告)日:2020-02-28

    申请号:CN201911095524.2

    申请日:2019-11-11

    Abstract: 本发明公开了一种基于卷积神经网络的单图像去雨方法。本发明首先,我们并未使用导向滤波或者其他滤波分离图像以尽可能地保留图像的原始信息。其次,我们提出了我们的RK块来代替残差块以更高效地提取特征。最后,我们提出了特征转换连结操作来处理多尺度雨线。此外,批正则化操作假设了特征都有着相同的分布,然而不同的雨线有着不同的方向、颜色和形状,因此我们移除了网络中所有的批正则化操作。本发明的有益效果:以卷积神经网络为基础,设计一类较为简洁、高效的单步单流去雨网络模型,以便更好地修复带雨图像,同时保持修复质量和模型大小之间的平衡。

    基于注意力反馈机制的图像自动语句标注方法

    公开(公告)号:CN108960338A

    公开(公告)日:2018-12-07

    申请号:CN201810792426.3

    申请日:2018-07-18

    CPC classification number: G06K9/6256 G06F17/2705 G06F17/2775

    Abstract: 本发明涉及一种基于注意力反馈机制的图像自动语句标注方法,包括:构建输入数据,给定一系列的图像χ={x1,x2,...,xN}作为训练集,其中N是样本数量;图像xi对应的语句表述为si={si,1,si,2,...,si,T},T代表句子Si的长度;构建CNN‑RNN模型,进行正向文本成:从生成的文本中提取关键词注意力反向矫正图像注意力:利用上述从文本中提取出的关注特征,对原本的图像关注特征进行注意力矫正。能够解决注意力机制在图像自动语句标注过程中的注意力分散问题及生成语句错乱的问题,采用反馈式CNN‑RNN结构,利用反馈机制将生文本中的关键信息反向传给图像,将有利于在提取图像特征的过程中,更加关注文本中的信息所对应的显著目标,从而有利于使得图像关键信息和文本关键信息更加匹配。

Patent Agency Ranking