-
公开(公告)号:CN104899578A
公开(公告)日:2015-09-09
申请号:CN201510363785.3
申请日:2015-06-26
Applicant: 苏州大学张家港工业技术研究院
IPC: G06K9/00
CPC classification number: G06K9/00288 , G06K9/6274
Abstract: 本发明公开了一种人脸识别的方法,包括:将获取得到的人脸图像数据作为待测样本;利用投影变换矩阵将所述待测样本映射到低维特征空间中,得到投影后的测试样本;在训练样本集合中,查找与所述测试样本距离最近的标准样本作为目标样本;将所述目标样本的类别确定为所述测试样本的类别;其中,所述投影变换矩阵为通过构造的类内邻接矩阵以及类间邻接矩阵,对所述训练样本集合中的多个样本进行训练得到的变换矩阵,以使类间距离最大、类内距离最小。本发明所提供的人脸识别的方法及装置,为正交判别投影分别构造了两个邻接矩阵:类间和类内邻接矩阵,把类内信息和类间信息分开表示,以得到均衡的信息,从而实现类内最小和类间最大的目的。
-
公开(公告)号:CN104834834A
公开(公告)日:2015-08-12
申请号:CN201510166526.1
申请日:2015-04-09
Applicant: 苏州大学张家港工业技术研究院
Abstract: 本发明的启动子识别系统的构建方法和装置,将包含多条基因序列的数据集划分为具有预设属性的第一数据子集和不具有预设属性的第二数据子集;并分别提取第一、第二数据子集的多种预设特征,所述预设特征包括基因刚性特征;之后,对特征提取所得的多个特征数据集合进行建模,得到构成启动子识别系统所需的各个子分类器模型。可见,本发明在构建人类基因启动子识别系统时,考虑了基因结构特征(如基因刚性特征),通过提取基因数据的基因刚性特征,并将提取的基因刚性特征作为训练数据进行建模,使最终的识别系统具备了结合基因结构特征识别启动子的能力,提升了系统的识别性能。
-
公开(公告)号:CN111310046A
公开(公告)日:2020-06-19
申请号:CN202010097745.X
申请日:2020-02-18
Applicant: 苏州大学
IPC: G06F16/9535
Abstract: 本申请涉及一种对象推荐方法及装置,属于计算机技术领域,该方法包括:获取目标用户对对象的历史评分数据、历史评分时间和对象的属性信息;基于历史评分数据、历史评分时间和属性信息,确定各个对象之间的对象相似度矩阵;获取目标用户历史关注的历史目标对象和目标用户当前关注的实时目标对象;基于对象相似度矩阵确定每个历史目标对象的历史相似对象和每个实时目标对象的实时相似对象,得到目标用户的第一推荐列表;向目标用户推送第一推荐列表;可以解决现有的协同过滤算法的对象推荐准确性较低的问题;由于能够充分挖掘用户-对象评分矩阵的潜在信息,并且能够利用对象属性信息确定对象相似度矩阵,因此可以提高推荐结果的准确度。
-
公开(公告)号:CN103927550B
公开(公告)日:2017-09-08
申请号:CN201410161915.0
申请日:2014-04-22
Applicant: 苏州大学
IPC: G06K9/62
Abstract: 本申请提供一种手写体数字识别方法及系统,该方法通过接收用户输入的待测手写体数字样本;通过训练得到的第一分类器、第二分类器、第三分类器分别对待测手写体数字样本进行预测,并输出第一分类器、第二分类器、第三分类器对待测手写体数字样本的预测结果;比较第一分类器、第二分类器、第三分类器对待测手写体数字样本的预测结果,若至少2个分类器得出的是相同的预测结果,则判定待测手写体数字样本属于该预测结果的类别,否则,判定待测手写体数字样本属于第二分类器输出的预测结果的类别。该方法通过使用3个分类器对待测样本进行预测,在保证预测速度的基础上,很大程度上提高了手写体数字识别的识别率。
-
公开(公告)号:CN103927529B
公开(公告)日:2017-06-16
申请号:CN201410185212.1
申请日:2014-05-05
Applicant: 苏州大学
Abstract: 本发明公开了一种基于相似性学习的人脸集匹配方法及系统,首先通过选取部分样本作为训练样本,进行训练过程,实现对分类器的选取,避免了将所有的样本作为训练样本进行训练,并对训练集样本进行降维处理,得到降维训练样本,避免了高维数据对计算复杂度的增加,减少了训练周期,从而简化了训练过程,避免了复杂的过程,提高了训练速度。另外,本方案中通过选取训练集样本每类样本的几何平均值来构建多个不同的分类器,达到了通过简单的操作过程带来精确的结果的效果。
-
公开(公告)号:CN103955676B
公开(公告)日:2017-04-19
申请号:CN201410197890.X
申请日:2014-05-12
Applicant: 苏州大学
Abstract: 本申请公开了一种人脸识别方法及系统,该方法包括利用PCA法对训练样本集进行初始降维,并利用训练样本的类别标签信息构造具有分类信息的矩阵,然后确定最优的二次投影矩阵,对初始降维训练样本集进行二次降维,然后对测试样本同样进行二次降维,在二次降维后的低维空间中进行分类。本申请通过二次降维处理,提高了人脸识别的准确度和效率。
-
公开(公告)号:CN103577839B
公开(公告)日:2017-01-04
申请号:CN201310625378.6
申请日:2013-11-28
Applicant: 苏州大学
IPC: G06K9/62
Abstract: 一种邻域保持判别嵌入人脸识别方法及系统,本发明方法包括以下步骤。S1、对已有的人脸训练样本集进行初始降维,并根据训练样本矩阵确定初始降维训练样本矩阵。S2、寻找最优变换AX1,令二次降维训练样本矩阵X2=AX1,并获取二次降维训练样本集。S3、建立测试样本并将其进行二次降维获得二次降维测试样本,在二次降维训练样本中查找与所述二次降维测试样本相邻的样本,并将占比较高的二次降维训练样本的类别赋予所述测试样本。
-
公开(公告)号:CN105825236A
公开(公告)日:2016-08-03
申请号:CN201610156405.3
申请日:2016-03-18
Applicant: 苏州大学
IPC: G06K9/62
CPC classification number: G06K9/6215 , G06K9/6268
Abstract: 本发明公开了检测一种样本检测模型的构建方法和系统,从预设的训练样本集中确定多个类别的训练样本;基于余弦去中心相似性原理,并根据多个类别的训练样本的同类相似样本集和异类相似样本集,建立低维特征空间的投影矩阵;依据投影矩阵以及多个类别的训练样本构建样本检测模型;样本检测模型用于检测待测样本的类别参数。本发明基于余弦去中心相似性原理来度量待测样本与训练样本之间的相似度,与采用欧氏距离的现有技术相比,本申请方案的相似度的度量精度更高,从而可以提高对待测样本的检测精度。
-
-
公开(公告)号:CN104732242A
公开(公告)日:2015-06-24
申请号:CN201510163171.0
申请日:2015-04-08
Applicant: 苏州大学
IPC: G06K9/62
Abstract: 本发明的多分类器构建方法和装置,将包含多类样本数据的训练样本集处理为多个两类数据集合;且对每个两类数据集合进行特征选择,得到相应的特征索引子集;并合并多个特征索引子集得到一特征索引集合;之后对特征选择后的训练样本集进行建模,得到目标多分类器。可见,本发明通过把多类问题分解为多个两类问题,并对每个两类问题进行冗余特征剔除,使每个子分类器(可简单理解为每个特征索引子集对应一子分类器)具备了特征挑选能力;从而后续进行类别诊断时,可预先基于各子分类器的特征挑选能力对待测数据进行特征挑选(本申请具体利用各特征子集融合后所得的特征索引集合进行特征选择)。可见本申请解决了现有技术的问题,提升了诊断准确率。
-
-
-
-
-
-
-
-
-