一种新的隐私保护下非交互式的K近邻分类方法

    公开(公告)号:CN109359588B

    公开(公告)日:2021-02-09

    申请号:CN201811200446.3

    申请日:2018-10-15

    Abstract: 本发明公开了一种新的隐私保护下非交互式的K近邻分类方法,涉及大数据安全技术领域,步骤如下:1.客户端通过向量同态加密方法对由若干个带有标签的训练数据组成的训练数据集中的训练数据进行特征加密,得到密文数据集和中间矩阵,并上传至云端;2.客户端接收待分类明文向量组并对其进行加密,得到密文向量组,并上传至云端;3.云端根据密文数据集和中间矩阵计算密文向量组中每一个密文向量与密文数据集包含的所有密文数据的相似度,再根据近邻分类算法得出该密文向量组的分类结果集,将分类结果集发送至客户端。本发明极大地提高了加密的效率和安全性,实现非交互式技术,达到真正的外包计算,减小了客户端的计算压力。

    一种基于向量同态加密的HOG图像特征提取算法

    公开(公告)号:CN106952212B

    公开(公告)日:2019-10-15

    申请号:CN201710151231.6

    申请日:2017-03-14

    Abstract: 本发明公开一种基于向量同态加密的HOG图像特征提取算法,涉及图像处理技术领域,由于VHE同态加密方案在密文域内仅支持整数间的运算并且不支持除法,针对VHE所能支持的运算,对已有的HOG图像特征提取算法进行合理的裁剪和改进,简化一些特征提取步骤,并将提取过程中的一些复杂运算进行等效的转换,保证裁剪后的算法在保证一定的算法效率的前提下,提取的特征向量与原始HOG特征提取算法提取的特征向量是等效的,都可以准确地表达图像特征。本方案采取的基于向量的同态加密方案VHE,能够直接对一个整数向量进行加密,并支持基于密文向量的一些操作运算,与之前的基于单个比特或者单个整数加密的同态加密方案相比,大大提高密文域内的运算效率。

    基于向量同态加密的隐私保护k-means聚类方法

    公开(公告)号:CN110163292A

    公开(公告)日:2019-08-23

    申请号:CN201910451996.0

    申请日:2019-05-28

    Abstract: 本发明涉及基于向量同态加密的隐私保护k-means聚类方法,包括:A.客户端接收待聚类向量组;B.通过向量同态加密的方法对所述待聚类向量组进行加密,在加密过程中保留密钥交换矩阵M和比特扩展矩阵W,加密后得到密文向量组;C.根据通过AM=W得到矩阵A,定义中间矩阵H=ATA;D.将中间矩阵H与密文向量组传送至聚类服务器进行聚类分析,将密文向量组中的每一个向量附上聚类标签;E.聚类服务器将完成聚类分析的密文向量组发送回客户端解密,根据各个向量的标签组合得到聚类结果。本发明解决了密文数据云传输的安全性问题,保证了数据的隐私可靠性,同时还提高了对向量类型判断的效率,扩大了向量类型判断的应用范围。

    一种新的隐私保护下非交互式的K近邻分类方法

    公开(公告)号:CN109359588A

    公开(公告)日:2019-02-19

    申请号:CN201811200446.3

    申请日:2018-10-15

    CPC classification number: G06K9/00885 G06K9/6276 G06K2009/00953

    Abstract: 本发明公开了一种新的隐私保护下非交互式的K近邻分类方法,涉及K近邻分类算法在隐私保护下的向量分类领域,步骤如下:1.客户端通过向量同态加密方法对由若干个带有标签的训练数据组成的训练数据集中的训练数据进行特征加密,得到密文数据集和中间矩阵,并上传至云端;2.客户端接收待分类明文向量组并对其进行加密,得到密文向量组,并上传至云端;3.云端根据密文数据集和中间矩阵计算密文向量组中每一个密文向量与密文数据集包含的所有密文数据的相似度,再根据近邻分类算法得出该密文向量组的分类结果集,将分类结果集发送至客户端。本发明极大地提高了加密的效率和安全性,实现非交互式技术,达到真正的外包计算,减小了客户端的计算压力。

    一种隐私保护下的广义线性回归方法

    公开(公告)号:CN107612675A

    公开(公告)日:2018-01-19

    申请号:CN201710850810.X

    申请日:2017-09-20

    Abstract: 本发明公开了一种隐私保护下的广义线性回归方法,旨在解决现有技术中在计算外包时云端不可信的时候在加密下情况下实现广义线性回归效率效和精度低的问题,本申请中结合加密算法以及线性回归方法以及梯度下降法实现了数据集加密之后的广义线性回归,也就是实现了云端不可信的情况下,加密保护下依旧可以进行数据处理等,实现了真正的计算外包,实现了明文的计算与密文的计算的相互对应,克服了传统的梯度下降法在密文下迭代的准确率低和计算速度慢的技术难题;本申请适用于向量同态计算相关领域。

    一种隐私保护的超声波通信方法

    公开(公告)号:CN107147449A

    公开(公告)日:2017-09-08

    申请号:CN201710579449.1

    申请日:2017-07-17

    CPC classification number: H04B11/00 H04L1/0057 H04L1/0061 H04L63/0428

    Abstract: 本发明涉及一种隐私保护的超声波通信方法,解决的是被人耳听到、安全性低的技术问题,通过采用包括:(1)发送端读取发送文本,采用一对一编码本编码方法对文本进行编码,将文本文字信息转换为声波包,声波包中的声波频率为人耳听不到的声音频率;(2)对编码得到的声波包通过保留格式加密方法加密生成送加密声波包;(3)发送端通过空气声音信道将加密声波包传输到接收端;(4)接收端接收加密声波包,解密加密声波包,解密后通过与步骤(1)中编码方法对应的解码方法解码,再进行容错处理后输出接收文本的技术方案,较好的解决了该问题。该方案具有隐私性强、通信代价低等有点,可用于隐私保护的超声波通信中。

    隐私保护下的向量相似性判断方法

    公开(公告)号:CN106788962B

    公开(公告)日:2020-04-14

    申请号:CN201611145362.5

    申请日:2016-12-13

    Abstract: 本发明涉及隐私保护下的向量相似性判断方法,其中基于向量伸缩变换的隐私保护下的向量相似性判断方法,包括:A.接收两个标准向量x1、x2和待查询向量x3;B.对x1、x2和x3进行伸缩,得到两个标准输出向量L1、L2和待查询输出向量L3;C.设置误差阈值d后,分别计算||L1-L3||和||L2-L3||;D.比较||L1-L3||-||L2-L3||与d的大小关系,确定x3与x1或x2相似。本发明能够在不公开向量每个维度的值的前提下,通过比较向量的模长高效的判断向量之间的相似性,并且对密文比较的效率和明文比较对比,性能几乎没有下降。

    一种基于向量同态加密的隐私保护的线性SVM模型训练算法

    公开(公告)号:CN108521326A

    公开(公告)日:2018-09-11

    申请号:CN201810317657.9

    申请日:2018-04-10

    Abstract: 本发明公开了一种基于向量同态加密的隐私保护的线性SVM模型训练算法,属于信息技术安全领域,包括以下步骤:步骤1.使用者采用基于向量的同态加密方案VHE对训练数据集进行加密,并将加密结果发送至服务器;步骤2.服务器对加密结果进行计算,得到密文线性核函数矩阵并将密文线性核函数矩阵返回至使用者;步骤3.使用者对密文线性核函数矩阵进行解密,得到明文线性核函数矩阵并将明文线性核函数矩阵发送至服务器;步骤4.服务器采用密文SMO算法对明文线性核函数矩阵进行训练,并将训练结果返回至使用者。

    基于向量同态加密的隐私保护K‑NN分类方法

    公开(公告)号:CN106790069A

    公开(公告)日:2017-05-31

    申请号:CN201611190593.8

    申请日:2016-12-21

    Abstract: 本发明涉及基于向量同态加密的隐私保护K‑NN分类方法,包括:A.接收查询向量组和标准向量组;B.通过查询向量组生成矩阵G,标准向量组使用密钥S通过向量同态加密生成密文组和新密钥GS;C.对新密钥GS进行密钥转换为转换密钥S',得到此时的转换矩阵M和转换密文组;D.使用转换密钥S'对转换密文组解密,得到解密向量组;E.根据K个最小值的解密向量的分量为对应的各查询向量附上分类标签。本发明能够良好的对用户隐私数据保护,并且在隐私数据受到保护的情况下,通过K‑NN算法对用户的查询向量进行高效、准确的分类,提高了对向量类型判断的效率,扩大了向量类型判断的应用范围。

Patent Agency Ranking