-
公开(公告)号:CN113036445A
公开(公告)日:2021-06-25
申请号:CN202110276301.7
申请日:2021-03-15
Applicant: 北京索通新动能科技有限公司 , 清华大学
IPC: H01Q15/00
Abstract: 本发明公开了一种基于超材料结构的高频电磁能量采集器。所述基于超材料的高频电磁能量采集器具体组成单元为超材料响应基元,可以单个工作,也可多个级联工作。所述超材料响应基元具体包括电磁谐振结构和能量转换结构。在采集能量时,电磁谐振结构与电磁波作用产生所需的局域电场和磁场,电、磁场共同作用于该区域的能量转换结构,使得其中的自由载流子受到洛伦兹力直流分量作用而发生定向偏转,从而使得在能量转换结构两端边界形成电势差。通过在能量转换结构两端接入储能模块,便可以利用该电势差实现能量储存,从而完成高频电磁能量采集。本发明提出的高频电磁能量采集器具有频段通用、结构简单、无需整流电路、便于集成、室温工作等优点。
-
公开(公告)号:CN118095064A
公开(公告)日:2024-05-28
申请号:CN202410122958.1
申请日:2024-01-29
Applicant: 清华大学
Abstract: 本申请提供一种电磁波传播模式转换结构确定方法、器件、装置及设备。该方法包括:通过获取待转换的目标模态;采用预设优化算法,根据预设条件和多个预设散射结构对预设波导的第一散射参数,从多个预设散射结构中确定至少一个目标散射结构;第一散射参数包括预设散射结构对预设波导的第一透射参数;第一透射参数包括预设散射结构在预设波导内响应于各传播模态的入射波产生各传播模态的透射波的第一透射系数;预设散射结构为超材料随机结构;预设条件包括各目标散射结构串联后对预设波导的透射参数属于第一预设范围;将各目标散射结构串联后形成的结构确定为目标转换结构。本申请能够将混合模态的电磁波转换为单一模态的电磁波。
-
公开(公告)号:CN117250808A
公开(公告)日:2023-12-19
申请号:CN202311200732.0
申请日:2023-09-18
Applicant: 清华大学
Abstract: 本发明涉及一种基于电极性涡旋结构产生二次谐波结构光的方法,包括:选用具有强极性的有机分子作为原材料,基于原材料通过控制工艺条件,使得有机分子排列呈现柱型各向异性状,获得电极性涡旋结构且呈现自发极化特征;将选定波长的脉冲激光作为入射基频光,调控入射基频光的偏振状态,该入射基频光通过电极性涡旋结构后,出射光中产生包括二次谐波结构光场。因此,本发明提出的基于电极性涡旋结构产生二次谐波结构光场的方法,实现了使用极性有机分子电极性涡旋结构作为二次谐波结构光的产生器。
-
公开(公告)号:CN117192866A
公开(公告)日:2023-12-08
申请号:CN202311200747.7
申请日:2023-09-18
Applicant: 清华大学
Abstract: 本发明涉及一种基于极性有机分子产生三次谐波结构光的方法,包括:控制极性有机分子的工艺条件,使得有机分子排列呈现柱型各向异性状且呈现自发极化特征,获得电极性涡旋结构;将设定波长的激光作为基频光入射到电极性涡旋结构,出射光场中产生二次谐波信号;不断增加基频光的功率,当基频光的功率达到设定值时,二次谐波和基频光和频产生三次谐波,透过电极性涡旋结构的出射光中含有三次谐波信号;控制基频光的偏振方向,改变出射三次谐波结构光的特性。相对于目前超表面产生三次谐波结构光的办法,本发明不涉及任何微纳加工手段,实现了基于极性有机分子电极性涡旋结构作为三次谐波结构光的产生器。
-
公开(公告)号:CN115939777A
公开(公告)日:2023-04-07
申请号:CN202310053732.6
申请日:2023-02-03
Applicant: 清华大学
Abstract: 本发明公开了一种高性能可集成全陶瓷基超材料完美吸收器。该陶瓷基超材料吸收器结构简单紧凑,与不同介质陶瓷体系兼容度高,以获得不同频率的完美吸收特性;无需衬底,可与多种微波/毫米波器件与系统集成匹配,打破了传统构筑完美吸收器件的理论框架。所述吸收器包括陶瓷谐振单元阵列,所述陶瓷谐振单元阵列包括若干个呈矩阵分布的陶瓷谐振单元。所述陶瓷谐振单元由一块具有正交立方体结构的温度稳定型介质陶瓷构成,根据等效电路模型,其等效电阻R的表达式为:式中,Q为完美吸收频点处陶瓷的损耗角正切值的倒数;L为陶瓷谐振单元长边的长度;S为陶瓷谐振单元的横截面积,S=h×r;ω为完美吸收频点;ε0为真空介电常数;εr为陶瓷的相对介电常数。
-
公开(公告)号:CN115598758A
公开(公告)日:2023-01-13
申请号:CN202211105753.X
申请日:2022-09-09
Applicant: 清华大学(CN)
Abstract: 本发明涉及一种基于球晶双折射产生结构光的方法,包括:使得具有双折射效应的有机分子结晶为球晶结构,球晶结构至少在两个晶体学主轴方向上的折射率存在差异;调整入射光的偏振状态;将入射光照射至有机分子的球晶结构,保证球晶结构的中心与入射光斑的中心重合,透过球晶结构的出射光为结构光。本发明在不涉及任何复杂微纳加工工艺的基础上产生结构光,具有成本低廉、工艺简单、可靠性高的优点。
-
公开(公告)号:CN114759355A
公开(公告)日:2022-07-15
申请号:CN202210310594.0
申请日:2022-03-28
Applicant: 清华大学深圳国际研究生院
Abstract: 本发明公开了一种多功能超材料,该多功能超材料包括辐射制冷层和阵列布设于辐射制冷层表面的若干个电磁波吸收单元;电磁波吸收单元的材质为介电常数在90以上、损耗角正切值为0.008~0.01的材料。该多功能超材料中阵列排布的电磁波吸收单元可在较小尺寸下实现电磁波吸收功能,保证辐射制冷层的辐射制冷功能得以充分发挥,从而实现电磁隐身和辐射制冷功能的有效复合,且其结构简单,无需外加主动装置,减轻能耗和重量。
-
公开(公告)号:CN113391469A
公开(公告)日:2021-09-14
申请号:CN202011398813.2
申请日:2020-12-02
Applicant: 北京索通新动能科技有限公司 , 清华大学
IPC: G02F1/01
Abstract: 本发明公开了一种基于线性耦合的介质基超表面全光开关。其基本结构为衬底上周期排列的二维介质多聚体超表面阵列。当信号电磁波(光)单独入射时,透过样品的光强较大,光开关处于导通状态;当控制电磁波(光)同时入射时,透过样品的光强极小,光开关由导通状态转换为阻断状态,实现了全光开关。通过改变多聚体超表面结构,可以调整目标电磁波的响应波长,可调范围能够覆盖射频到可见光波段。
-
公开(公告)号:CN118409381A
公开(公告)日:2024-07-30
申请号:CN202410395047.6
申请日:2024-04-02
Abstract: 本发明公开了一种基于各向异性结构阵列的太赫兹波片及其制作方法,太赫兹波片由至少一层波片单元组成,所述的波片单元上含有若干周期性排列的各向异性结构单元,所述的各向异性结构单元内含有镂空结构,所述的波片单元之间设有夹持制具;本发明提供的太赫兹波片,结构简单,容易制造,成本低廉。与目前太赫兹波片的解决方案相比,本发明设计灵活且性能优越。本发明提供的一种基于各向异性结构阵列的太赫兹波片,可以在几乎无插入损耗的条件下实现对太赫兹偏振态的线性旋转或者线性偏振态与圆偏振态的相互转换,可以更好的满足太赫兹时域光谱系统、成像系统、通信系统等应用领域中的使用需求。
-
公开(公告)号:CN114512556B
公开(公告)日:2023-11-03
申请号:CN202011278290.8
申请日:2020-11-16
Applicant: 北京索通新动能科技有限公司 , 清华大学
IPC: H01L31/0352 , H01L31/08
Abstract: 本发明公开了一种基于非对称超材料结构的光电探测器。所述基于非对称超材料结构的光电探测器可以由一个超材料敏感单元组成,也可以由多个超材料敏感单元以阵列形式组成。超材料敏感单元由非对称电磁谐振结构与转换结构组成。工作时,电磁波与非对称电磁谐振结构耦合产生局域强磁场,通过将转换结构置于局域强磁场中,其自由载流子将会受到产生的洛伦兹力作用而发生偏转并具有定向移动分量,进而在转换结构的物理边界聚积形成直流电势差,如此便实现了高频电磁波(光)信号向直流电的转换。本发明提供的光电探测器具有结构简单、探测速度快、响应波段范围大、加工难度和制作成本低等突出优点。
-
-
-
-
-
-
-
-
-