-
公开(公告)号:CN111785031B
公开(公告)日:2021-01-19
申请号:CN202010925899.3
申请日:2020-09-07
Applicant: 深圳市城市交通规划设计研究中心股份有限公司
Abstract: 一种基于速度时空图的交通拥堵成因智能识别算法,属于交通规划与管理技术领域。解决了现有技术中拥堵子集的特征量化指标提取成本高,缺乏对分类后交通拥堵成因的细致识别,无法支撑具有针对性的交通拥堵疏散决策的问题。要点:数据预处理:获得路段速度;基于速度时空图拥堵分类:依托速度时空图,利用图像形态学获得交通拥堵子集,通过拥堵特征提取方法,采用无监督分类算法实现交通拥堵子集的无监督分析结果;常偶发拥堵判别:基于McMaster算法或加州算法实现交通拥堵的常偶发判别;基于决策树的拥堵成因智能判别:基于拥堵子集分类与常偶发判别,结合数据实现拥堵成因的精细化判别。本发明利用路段速度提出交通拥堵成因智能判别算法。
-
公开(公告)号:CN111785031A
公开(公告)日:2020-10-16
申请号:CN202010925899.3
申请日:2020-09-07
Applicant: 深圳市城市交通规划设计研究中心股份有限公司
Abstract: 一种基于速度时空图的交通拥堵成因智能识别算法,属于交通规划与管理技术领域。解决了现有技术中拥堵子集的特征量化指标提取成本高,缺乏对分类后交通拥堵成因的细致识别,无法支撑具有针对性的交通拥堵疏散决策的问题。要点:数据预处理:获得路段速度;基于速度时空图拥堵分类:依托速度时空图,利用图像形态学获得交通拥堵子集,通过拥堵特征提取方法,采用无监督分类算法实现交通拥堵子集的无监督分析结果;常偶发拥堵判别:基于McMaster算法或加州算法实现交通拥堵的常偶发判别;基于决策树的拥堵成因智能判别:基于拥堵子集分类与常偶发判别,结合数据实现拥堵成因的精细化判别。本发明利用路段速度提出交通拥堵成因智能判别算法。
-