-
公开(公告)号:CN116580328B
公开(公告)日:2023-09-19
申请号:CN202310849642.8
申请日:2023-07-12
Applicant: 江西省水利科学院(江西省大坝安全管理中心、江西省水资源管理中心) , 东华理工大学南昌校区
IPC: G06V20/17 , G06V10/762 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了基于多任务辅助的热红外图像堤坝渗漏险情智能识别方法,包括改进和训练UNet模型、利用改进和训练UNet模型的堤坝渗漏险情检测两个过程。改进和训练UNet模型具有以下内容:数据采集,制作样本,生成样本和划分数据集,改进UNet模型,训练改进的UNet模型,利用改进和训练UNet模型的堤坝渗漏险情检测,堤坝渗漏险情的确定,堤坝渗漏险情检测。本发明的有益效果是:本发明将堤坝渗漏险情与背景分离的二分类问题转换成多分类问题,通过对这些易干扰堤坝渗漏险情的检测的地物进行识别,有利于提升堤坝渗漏险情的检测精度;针对堤坝渗漏险情小目标检测问题对Unet模型进行了改进,提升的检测的精度和速度。