-
公开(公告)号:CN110374914B
公开(公告)日:2020-11-20
申请号:CN201910674810.8
申请日:2019-07-25
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
IPC: F04D29/044 , F04D29/22
Abstract: 本发明提供一种离心泵的泵轴连接结构,所述连接结构包括叶轮部、轴部和弹性圈,所述叶轮部位于所述离心泵的叶轮上,所述轴部位于所述离心泵的泵轴,所述弹性圈设置于所述轴部和所述叶轮部之间,用以连接固定所述叶轮部和所述轴部;所述叶轮部朝向所述弹性圈的一侧设有若干第一单侧凸齿,所述轴部朝向所述弹性圈的一侧设有若干第二单侧凸齿;所述弹性圈为双侧凹齿结构,所述双侧凹齿分别与所述若干第一单侧凸齿和所述若干第二单侧凸齿配合连接。本发明连接结构可有效避免因泵内堵塞而造成叶轮折断和电机烧毁的问题,并且不影响泵的能量性能,为泵进行持续稳定工作提供了极大的保障。
-
公开(公告)号:CN108759650B
公开(公告)日:2020-11-03
申请号:CN201810364571.1
申请日:2018-04-23
Applicant: 江苏大学镇江流体工程装备技术研究院
IPC: G01B7/14
Abstract: 本发明提供一种磁力泵轴承间隙磨损的在线监测装置及其方法,包括n组轴承磨损检测器和信号处理显示电路;检测导线位于隔离套与外磁钢环之间、且固定于隔离套外表面与隔离套轴向平行;每组检测导线间隔角度分别为θ1、θ2、θ3,每组轴承磨损检测器的检测导线之间的间隔角度均满足为θ2的整倍数关系;各组轴承磨损检测器的信号经过滤波器处理后输出给频谱仪进行频谱分析,频谱分析后的图像在显示器上显示,当信号达到限位值时将会触动报警电路进行报警。本发明按照磁力泵外磁钢数来确定检测导线间隔角度的方法能够比较全面的检测到磁力泵轴承磨损的情况,本发明能准确地反映磁力泵轴承间隙磨损情况,性能可靠,安装调试方便,结构设计合理。
-
公开(公告)号:CN111691500A
公开(公告)日:2020-09-22
申请号:CN202010683143.2
申请日:2020-07-15
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
IPC: E03B5/00
Abstract: 本发明涉及一种具有仿生结构簸箕形进水流道,包括沿进水方向依次设置的直线进口段、具有仿生结构的簸箕形转向段和仿生喇叭管整流段;所述具有仿生结构的簸箕形转向段的表面设有仿海豚皮肤脊纹结构,所述仿海豚皮肤脊纹结构自簸箕形转向段进口位置沿水流方向扩散至簸箕形转向段的后壁位置;所述仿生喇叭管整流段的结构形状为海象头部的导流结构,用于对水流进入泵装置前的流态进行整流。本发明进水流道结构能够降低了紊流在簸箕形转向段表面的堆积效果,避免了不良涡流的形成;并对喇叭管位置水流起到整流作用,提高水流进入水泵装置时的水力性能。
-
公开(公告)号:CN110259720A
公开(公告)日:2019-09-20
申请号:CN201910499236.7
申请日:2019-06-11
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
Abstract: 本发明一种用于离心泵的缝隙引流叶轮,包括前盖板、后盖板、轮毂和叶片,所述叶片包括前段叶片和后段叶片;所述前段叶片和所述后段叶片之间设有用于引流的缝隙;其中,所述缝隙在所述前盖板处的宽度记为L1,所述缝隙在所述后盖板处宽度记为L2,L1>L2。本发明缝隙引流叶轮内的空化程度低,且在一定工况范围内提高了离心泵的水力性能。
-
公开(公告)号:CN109915407A
公开(公告)日:2019-06-21
申请号:CN201910315591.4
申请日:2019-04-19
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
Abstract: 本发明提供一种非光滑表面的离心泵叶轮及其效率和噪声协同提升设计方法,包括:盖板,所述盖板的中心部位具有一进口;多个叶片,多个所述叶片环绕所述进口设置于所述盖板的一侧,多个所述叶片间隔分布,至少部分所述叶片的工作面上具有用于减阻的第一非光滑表面结构;至少部分相邻所述叶片之间对应的所述盖板上设有用于减阻的第二非光滑表面结构。本发明通过在叶轮处设置非光滑结构优化,达到提高离心泵性能,降低泵内脉动以及降低振动噪声的效果。
-
公开(公告)号:CN109209895A
公开(公告)日:2019-01-15
申请号:CN201811029712.0
申请日:2018-09-05
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
Abstract: 一种带环形前盖板的宽窄叶片半开式旋流泵,主要包括泵体、叶轮、泵轴、密封结构等主要结构,泵体上有进口和出口,所述进口位于泵体前端,通过进口法兰与外部管件连接。后泵盖通过紧固螺栓与泵体固定连接,所述泵轴穿过后泵盖与叶轮通过键连接,并在泵轴端部用叶轮螺母将其与叶轮紧固,所述泵轴与外部的不动固定件间有机械密封结构。本发明所述叶轮是宽窄叶片半开式叶轮,其上宽叶片和窄叶片交替排列,宽叶片焊接有环形前盖板。可以在降低固体颗粒对叶轮磨损的同时,减小无叶泵腔内循环流损失,提高泵扬程和效率。
-
公开(公告)号:CN108568357A
公开(公告)日:2018-09-25
申请号:CN201810449087.9
申请日:2018-05-11
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
IPC: B05B1/34
CPC classification number: B05B1/3415
Abstract: 本发明提供了一种可产生旋转水流的导向式喷嘴,包括进水管路、出水管路和过渡管路,所述进水管路、过渡管路和出水管路依次串联连通形成喷嘴通道,还包括固定轴、导叶体轮毂和导叶;所述固定轴通过固定挡板放置在所述喷嘴通道内;所述导叶体轮毂通过轴承支撑在固定轴上,所述导叶体轮毂设有导叶。所述过渡管路的一端通过第一喇叭形收缩管路与进水管路连接,所述过渡管路的另一端通过第二喇叭形收缩管路与出水管路连接,所述过渡管路的直径小于进水管路的直径,所述出水管路的直径小于过渡管路的直径。本发明可以能够产生旋转水流,降低水耗,清洗干净。
-
公开(公告)号:CN117113656A
公开(公告)日:2023-11-24
申请号:CN202311007060.1
申请日:2023-08-11
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
IPC: G06F30/20 , G06F30/17 , G06F17/10 , G06F113/08
Abstract: 本发明公开了一种基于颗粒直径的中心射流泵设计方法,包含以下步骤:根据最大颗粒直径Dpmax计算扬程比修正系数kh、流量比修正系数kq、面积比修正系数km和喉管直径Dt,根据扬程比修正系数kh、喉管直径Dt、抽吸扬程Hs、工作扬程H1和排出扬程H2计算扬程比h及面积比m;根据流量比修正系数kq、面积比修正系数km、喉管直径Dt、扬程比h、面积比m和工作扬程H1计算流量比q、喷嘴出口直径d、工作流量Q1和抽吸流量Qs;对喷嘴锥角θ、吸入室收缩角α和喉嘴距Lc取值,并计算吸入室最小通路Lmin;校核Lmin是否符合Lmin≥2.75·Dpmax,若不满足,对θ、α和Lc重新取值,若满足则完成设计。本发明可以快速确定中心射流泵尺寸,具有适应性好、计算快的优点。
-
公开(公告)号:CN108980101B
公开(公告)日:2023-07-04
申请号:CN201810872643.3
申请日:2018-08-02
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
IPC: F04D29/24
Abstract: 本发明属于水泵技术领域,具体公开了一种基于鲨鱼表面减阻技术的仿生叶片,包括前缘减阻段、中弧线前减阻段、中弧线后减阻段、后缘减阻段;仿生叶片为轴流式叶片;前缘减阻段为圆齿形减阻沟槽,沟槽宽度b1=7.5~11.5k1,沟槽深度h1=0.35~0.45b1,槽肩宽度t1=0.1~0.2b;中弧线前减阻段为圆齿形减阻沟槽,沟槽的宽度b2=11.5~14.5k2,沟槽深度h2=0.65~0.75b2,槽肩宽度t2=0.1~0.2b2;中弧线后减阻段为刀刃形减阻沟槽,沟槽的宽度b3=16.5~18.5k3,沟槽深度h3=0.45~0.55b3,槽肩宽度t3=0.1~0.2b3;后缘减阻段为锯齿形减阻沟槽,槽肩倾斜度β=50~65°,沟槽宽度b4=13.5~15.5k4,沟槽深度h4=0.95~1.05b4,槽肩宽度t4=0.1~0.2b4。本发明能有效地利用不同减阻槽的减阻效率,最大幅度地降低叶片表面阻力及叶片表面阻力带来的水力损失,提高泵的运行效率。
-
公开(公告)号:CN109271699B
公开(公告)日:2023-05-26
申请号:CN201811051358.1
申请日:2018-09-10
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
IPC: G06F30/28 , G06F30/17 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明提出了一种大型泵装置性能曲线的计算方法。其包括以下步骤:步骤(1):根据泵相似理论,通过效率换算、流量换算、扬程换算、功率换算将标准模型泵性能曲线换算成目标尺寸原型泵性能曲线;步骤(2):耦合模拟计算进水流道、出水流道及泵内部流动;步骤(3):根据模拟计算结果计算进水流道、出水流道的水力损失;步骤(4):计算大型泵装置扬程和装置效率,从而最终得到装置的性能曲线。针对大型泵装置的无法直接进行试验,数值模拟结果不够精确等问题,本发明具有操作简单易实现的特点,能够准确地预测大型泵装置性能曲线。
-
-
-
-
-
-
-
-
-