-
公开(公告)号:CN117113656A
公开(公告)日:2023-11-24
申请号:CN202311007060.1
申请日:2023-08-11
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
IPC: G06F30/20 , G06F30/17 , G06F17/10 , G06F113/08
Abstract: 本发明公开了一种基于颗粒直径的中心射流泵设计方法,包含以下步骤:根据最大颗粒直径Dpmax计算扬程比修正系数kh、流量比修正系数kq、面积比修正系数km和喉管直径Dt,根据扬程比修正系数kh、喉管直径Dt、抽吸扬程Hs、工作扬程H1和排出扬程H2计算扬程比h及面积比m;根据流量比修正系数kq、面积比修正系数km、喉管直径Dt、扬程比h、面积比m和工作扬程H1计算流量比q、喷嘴出口直径d、工作流量Q1和抽吸流量Qs;对喷嘴锥角θ、吸入室收缩角α和喉嘴距Lc取值,并计算吸入室最小通路Lmin;校核Lmin是否符合Lmin≥2.75·Dpmax,若不满足,对θ、α和Lc重新取值,若满足则完成设计。本发明可以快速确定中心射流泵尺寸,具有适应性好、计算快的优点。
-
公开(公告)号:CN108980101B
公开(公告)日:2023-07-04
申请号:CN201810872643.3
申请日:2018-08-02
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
IPC: F04D29/24
Abstract: 本发明属于水泵技术领域,具体公开了一种基于鲨鱼表面减阻技术的仿生叶片,包括前缘减阻段、中弧线前减阻段、中弧线后减阻段、后缘减阻段;仿生叶片为轴流式叶片;前缘减阻段为圆齿形减阻沟槽,沟槽宽度b1=7.5~11.5k1,沟槽深度h1=0.35~0.45b1,槽肩宽度t1=0.1~0.2b;中弧线前减阻段为圆齿形减阻沟槽,沟槽的宽度b2=11.5~14.5k2,沟槽深度h2=0.65~0.75b2,槽肩宽度t2=0.1~0.2b2;中弧线后减阻段为刀刃形减阻沟槽,沟槽的宽度b3=16.5~18.5k3,沟槽深度h3=0.45~0.55b3,槽肩宽度t3=0.1~0.2b3;后缘减阻段为锯齿形减阻沟槽,槽肩倾斜度β=50~65°,沟槽宽度b4=13.5~15.5k4,沟槽深度h4=0.95~1.05b4,槽肩宽度t4=0.1~0.2b4。本发明能有效地利用不同减阻槽的减阻效率,最大幅度地降低叶片表面阻力及叶片表面阻力带来的水力损失,提高泵的运行效率。
-
公开(公告)号:CN109271699B
公开(公告)日:2023-05-26
申请号:CN201811051358.1
申请日:2018-09-10
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
IPC: G06F30/28 , G06F30/17 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明提出了一种大型泵装置性能曲线的计算方法。其包括以下步骤:步骤(1):根据泵相似理论,通过效率换算、流量换算、扬程换算、功率换算将标准模型泵性能曲线换算成目标尺寸原型泵性能曲线;步骤(2):耦合模拟计算进水流道、出水流道及泵内部流动;步骤(3):根据模拟计算结果计算进水流道、出水流道的水力损失;步骤(4):计算大型泵装置扬程和装置效率,从而最终得到装置的性能曲线。针对大型泵装置的无法直接进行试验,数值模拟结果不够精确等问题,本发明具有操作简单易实现的特点,能够准确地预测大型泵装置性能曲线。
-
公开(公告)号:CN115030914A
公开(公告)日:2022-09-09
申请号:CN202210687636.2
申请日:2022-06-16
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
Abstract: 本发明提供一种低振动旋流泵叶轮,包括正面圆柱叶片、背面圆柱叶片、盖板,轮毂和键槽,所述正面圆柱叶片、背面圆柱叶片位于盖板两侧错列放置,所述盖板直径小于叶轮外径。本发明能够避免叶轮与后腔间隙的环流损失以及叶片流道漩涡,有效降运行低振动并一定程度提升泵的水力性能。
-
公开(公告)号:CN112229820B
公开(公告)日:2022-09-09
申请号:CN202010991365.0
申请日:2020-09-21
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
Abstract: 本发明涉及一种染料池折射率测量方法,通过建立染料池可视化试验台;获取的基于高斯金子塔改进的PIV互相关算法,并建立伪速度矢量判定准则,然后实现其程序化;对可视化染料池进行PIV试验测量,得到可视化染料池内平均速度;基于RSA的伪随机算法打印背景点阵;采用高速相机,得到平均速度及速度为0时的染料池试件背景点阵图像;对背景点阵图像进行互相关分析,得到染料池试件的位移分布;基于背景纹影技术,将基于改进的PIV互相关算法得到的位移分布带入带有源项的泊松方程,采用边界元法进行求解,如此,可以提高染料池折射率的计算精度。
-
公开(公告)号:CN112229625B
公开(公告)日:2022-06-07
申请号:CN202011132246.6
申请日:2020-10-21
Applicant: 江苏大学 , 中国航发沈阳发动机研究所 , 江苏大学镇江流体工程装备技术研究院
IPC: G01M13/003 , G01D21/02
Abstract: 本发明提供了一种调压差活门动态性能测试试验台及其测量方法,包括活门管路主体、油箱、空压机和高速摄影采集系统,所述活门管路主体包括闭环回路、活门进口管路、活门供油管路、活门溢流管路和活门中腔进口管路;所述活门进口管路上安装第三温度传感器和第三压力传感器;所述活门供油管路上安装第四压力传感器和第四温度传感器;所述活门溢流管路用于连接溢流出口与油箱进口,所述活门中腔进口管路用于连接空压机和中腔压力进口,所述高速摄影采集系统用于采集不同状态下阀芯运动情况。本发明可以实现调压差活门在特定工作条件下其动态特性试验。
-
公开(公告)号:CN111878419B
公开(公告)日:2022-04-08
申请号:CN202010577113.3
申请日:2020-08-21
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
Abstract: 本发明提供了一种深海采矿扬矿泵回流保护装置,包括过流管道、防回流挡板、吸合件和控制开关,过流管道的两端分别与扬矿管和扬矿泵出口管连接,过流管道内设置有用于阻断管道流通的防回流挡板,防回流挡板的一端与过流管道内壁铰接,自由端能够绕铰接处旋转以实现对过流管道的阻断和开启,吸合件设置在过流管道内壁上,防回流挡板的自由端能够通过吸合件与过流管道的内壁吸附连接,实现过流管道内的流通,控制开关控制吸合件与防回流挡板的吸合和断开。本发明的保护装置能够解决深海采矿扬矿泵由于停机、系统断电等情况下,管道内颗粒在泵腔内沉积堵塞问题,从而防止扬矿泵下一次运行时泵磨损、堵塞严重甚至无法正常开机等意外事故的发生。
-
公开(公告)号:CN112231869A
公开(公告)日:2021-01-15
申请号:CN202010991354.2
申请日:2020-09-21
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
IPC: G06F30/18 , G06F30/23 , G06F30/25 , G06F113/14
Abstract: 本发明提供一种迪恩涡运动信息的测量方法和装置,主要用于测量泵系统中U型圆管的迪恩涡。测量方法包括:搭建迪恩涡测量系统,主要包括U型圆管、套设于U型圆管进口区的无盖正方形盒和套设于U型圆管的无盖六边形盒;将碘化钠溶液作为流动介质,注满无盖正方形盒和无盖六边形盒;采用PIV依次拍摄测量区域关键截面的粒子图像;基于改进的PIV互相关算法,基于多级网格迭代法和网格变形算法建立多网格查问区域变形技术,并在PIVlab上实现其程序化;在此基础上对粒子图像进行平均处理,得到主流区平均速度分布及迪恩测量区涡流分布。本发明专利不仅可以实现迪恩涡的高精度测量,还可以增强PIV互相关算法的空间分辨率。
-
公开(公告)号:CN109185227B
公开(公告)日:2021-01-05
申请号:CN201810897656.6
申请日:2018-08-08
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
Abstract: 本发明属于流体机械领域,涉及一种固液两相流离心泵隔舌设计方法。该新型弹性隔舌结构由弹性部和刚性部组成;弹性部由工作部和固定部组成;工作部通过固体颗粒的挤压发生弹性形变,从而增大隔舌和叶轮的间隙,最终可以使大粒径的固体颗粒安全通过而不影响泵的正常运行和能量性能。固定部通过和刚性部过盈配合对弹性部进行固定。本发明结构简单、操作容易,可有效增加隔舌处可通过颗粒的直径,并且不影响泵的能量性能,在输送固液两相流时可以保证泵内无堵塞,为泵进行持续稳定固液两相流输送提供了极大的保障。
-
公开(公告)号:CN111859565A
公开(公告)日:2020-10-30
申请号:CN202010677453.3
申请日:2020-07-15
Applicant: 江苏大学镇江流体工程装备技术研究院 , 江苏大学
IPC: G06F30/17 , G06F30/28 , G06F113/08 , G06F119/04 , G06F119/14
Abstract: 本发明提供一种水泵叶轮表面涂层厚度的确定方法和装置,该方法通过获取水泵叶轮无涂层时的扬程、水力损失值;基于扬程变化系数、扬程和水力损失值确定目标水力损失值;扬程变化系数表征涂层的厚度对扬程的影响程度;基于目标水力损失值确定涂层的第一厚度值;确定水泵的叶片被金属溶液电化学腐蚀所产生的腐蚀电流强度;根据涂层保护效率和腐蚀电流强度确定目标电流强度;涂层保护效率表征涂层的厚度对保护水泵的叶片不被腐蚀的有效程度;基于目标电流强度确定涂层的第二厚度。如此,确定涂层的厚度范围为第一厚度至第二厚度,可以提升涂层的保护效果,可以降低喷涂的成本。
-
-
-
-
-
-
-
-
-