一种基于小波相干的脑肌功能网络构建方法

    公开(公告)号:CN111563581A

    公开(公告)日:2020-08-21

    申请号:CN202010460960.1

    申请日:2020-05-27

    Abstract: 本发明涉及一种基于小波相干的脑肌功能网络构建方法。在人体运动过程中,大脑皮层通过脊髓和周围神经控制肌肉组织的运动,使得肢体可以完成一定的运动功能,而肢体的运动又可以通过传入神经反馈给大脑皮层。脑肌电功能耦合可以从生理上反映皮层与肌肉之间的关系。为了更好的探索人体行为感知,应用脑电与肌电信号研究运动过程中不同通道信号之间的脑肌功能耦合强度,并以此作为复杂网络加权边的值,构建脑肌功能网络。将两两信号之间的小波相干值作为脑肌功能耦合强度,同时为了增大不同动作网络模型的差异,应用阈值法和固定加权边法简化网络模型。实验结果证明,构建的脑肌功能网络具有小世界特性,应用网络特征,可对人体行为动作进行识别。

    基于正向动力学与希尔模型的状态空间肌电模型构建方法

    公开(公告)号:CN109885159A

    公开(公告)日:2019-06-14

    申请号:CN201910038188.1

    申请日:2019-01-16

    Abstract: 本发明涉及到一种基于正向动力学与希尔模型的状态空间肌电模型构建方法,首先采集关节在连续运动状态下相关肌肉的肌电信号,并对其进行带通滤波处理,然后由神经激活求出相关肌肉激活,并将其代入希尔肌肉模型,然后对希尔肌肉模型进行化简及参数替代,再将替代后的简化模型与关节正向动力学结合,得出离散时间状态下的预测模型,最后通过对采集到的相关肌电信号进行均方根和小波系数的特征提取,组成测量方程作为状态反馈,并通过拟合方程与关节运动拟合,得到最终的状态空间肌电模型。该模型与传统的角度估计方法相比,在预测精度和实时性等方面都有了明显的改进。

    基于肌电模型和无迹卡尔曼滤波的关节运动估计方法

    公开(公告)号:CN109645995A

    公开(公告)日:2019-04-19

    申请号:CN201910038177.3

    申请日:2019-01-16

    Abstract: 本发明涉及到一种基于肌电模型和无迹卡尔曼滤波的关节运动估计方法,首先采集膝关节在连续运动状态下股二头肌、股四头肌、股外侧肌、股内侧肌、半腱肌、股薄肌的肌电信号和实时角度,对其进行带通滤波处理,并提取小波系数和均方根特征,然后使用一种结合了肌肉动力学、关节动力学、骨骼动力学和相关肌电特征的状态空间肌电模型,通过无迹卡尔曼滤波算法,得出Sigma采样集χi和权重Wi,然后进行进一步的预测,计算出系统状态变量和协方差矩阵P(k+1|k),迭代循环后,实现对膝关节连续运动的估计。该方法与传统的角度估计方法相比,减小了系统误差、累积误差和外部干扰的影响,精度高,稳定性好,对目标机动反应快速,有了明显的改进。

    一种基于部分定向相干法的脑功能网络构建方法

    公开(公告)号:CN109524112A

    公开(公告)日:2019-03-26

    申请号:CN201811601572.X

    申请日:2018-12-26

    Abstract: 本发明提出了一种基于部分定向相干法的脑功能网络构建方法;本发明首先采集脑电信号,对脑电数据进行小波硬阈值去噪、用独立成分分析方法去除心电、眼电。其次,对脑电信号运用多轨道自回归模型进行建模,并通过拉普拉斯变换将其转化到频域上,得到线性部分定向相干值。然后,利用AIC准则确定模型的阶数,采用显著性水平的方法计算阈值,根据阈值确定二值化矩阵。最后,根据二值化矩阵建立脑功能网络连接图。功能网络连接图以采集脑电通道位置作为节点位置。数据显示使用该方法能够鉴别患者发病间期分别与人体视觉、体觉及精神功能相关脑网络结点的变化情况。

    基于特征类可分性指标的人体日常行为肌电特征选择方法

    公开(公告)号:CN109498009A

    公开(公告)日:2019-03-22

    申请号:CN201811606406.9

    申请日:2018-12-26

    Abstract: 本发明公开了一种基于特征类可分性指标的人体日常行为肌电特征选择方法。首先,采集了人体下肢活动中四路表面肌电信号,然后计算了10种提取每路肌电信号的10个肌电特征形成肌电特征池,对静态动作、步态动作、静态转换动作的三大类分别计算10个肌电信号特征各自的特征类可分性指标,从肌电特征池中选择特征类可分性指标高于0.6的肌电特征组成静态动作肌电特征组,特征类可分性指标高于0.5的肌电特征组成步态动作肌电特征组,特征类可分性指标高于0.2的肌电特征组成静态转换动作肌电特征组。根据特征类可分性指标可以最大限度的利用各个特征,不会造成特征信息的浪费或冗余,大大降低了算法的复杂度,使分类效果更好。

    一种基于小波相干的脑肌功能网络构建方法

    公开(公告)号:CN111563581B

    公开(公告)日:2023-08-18

    申请号:CN202010460960.1

    申请日:2020-05-27

    Abstract: 本发明涉及一种基于小波相干的脑肌功能网络构建方法。在人体运动过程中,大脑皮层通过脊髓和周围神经控制肌肉组织的运动,使得肢体可以完成一定的运动功能,而肢体的运动又可以通过传入神经反馈给大脑皮层。脑肌电功能耦合可以从生理上反映皮层与肌肉之间的关系。为了更好的探索人体行为感知,应用脑电与肌电信号研究运动过程中不同通道信号之间的脑肌功能耦合强度,并以此作为复杂网络加权边的值,构建脑肌功能网络。将两两信号之间的小波相干值作为脑肌功能耦合强度,同时为了增大不同动作网络模型的差异,应用阈值法和固定加权边法简化网络模型。实验结果证明,构建的脑肌功能网络具有小世界特性,应用网络特征,可对人体行为动作进行识别。

    基于正向动力学与希尔模型的状态空间肌电模型构建方法

    公开(公告)号:CN109885159B

    公开(公告)日:2022-03-01

    申请号:CN201910038188.1

    申请日:2019-01-16

    Abstract: 本发明涉及到一种基于正向动力学与希尔模型的状态空间肌电模型构建方法,首先采集关节在连续运动状态下相关肌肉的肌电信号,并对其进行带通滤波处理,然后由神经激活求出相关肌肉激活,并将其代入希尔肌肉模型,然后对希尔肌肉模型进行化简及参数替代,再将替代后的简化模型与关节正向动力学结合,得出离散时间状态下的预测模型,最后通过对采集到的相关肌电信号进行均方根和小波系数的特征提取,组成测量方程作为状态反馈,并通过拟合方程与关节运动拟合,得到最终的状态空间肌电模型。该模型与传统的角度估计方法相比,在预测精度和实时性等方面都有了明显的改进。

    人体日常行为动作的足底压力特征提取方法

    公开(公告)号:CN110226932A

    公开(公告)日:2019-09-13

    申请号:CN201811606326.3

    申请日:2018-12-26

    Abstract: 本发明公开了一种人体日常行为动作的足底压力特征提取方法。本发明通过压力鞋垫采集第一跖骨、第二跖骨和脚跟区域各自的压力信号,计算压力比,总压力比,将各传感器的压力及总压力归一化,提取足底压力的第一特征子矢量和第二特征子矢量。根据在人体的各种运动模式下,足底压力传感器的当前值都与过去值相关,构建足底压力信号的AR模型,求得模型系数。通过实验对不同日常行为动作进行足底AR模型的AIC计算,综合AIC的值和维数,提出权衡可信度,使权衡的可信度最高所对应的阶数即为最合适阶数。把足底压力传感器的AR模型系数构建为第三特征矢量。本发明通过AIC准则和权衡可信度来确定足底压力AR模型的阶数,有很好的效果。

    基于模糊C均值和DBI的肌电信号特征选择方法

    公开(公告)号:CN109800792A

    公开(公告)日:2019-05-24

    申请号:CN201811606346.0

    申请日:2018-12-26

    Abstract: 本发明公开了一种基于模糊C均值和DBI的肌电信号特征选择方法,本发明首先采集人体做日常行为动作时4路肌电信号,然后提取原始信号的平均幅值,方差,威尔逊振幅,自回归系数,中位频率,平均功率频率,小波能量系数,小波包能量系数,模糊熵,排列熵共10个肌电特征形成肌电特征池,再用模糊C均值对这些特征进行划分,把n个向量分为c个模糊组,并求每组的聚类中心,使得非相似性指标的价值函数达到最小。最后,计算划分后的DBI值,选择DBI最小的4个特征作为适合识别日常行为动作的特征。基于模糊C均值和DBI的肌电信号特征选择方法,可以选择有效的合理的肌电特征值。

    基于肌电小波相干性和支持向量机的日常行为识别方法

    公开(公告)号:CN109567798A

    公开(公告)日:2019-04-05

    申请号:CN201811603106.5

    申请日:2018-12-26

    Abstract: 本发明公开了一种基于肌电小波相干性和支持向量机的日常行为识别方法,本发明通过肌电信号采集仪采集人体相关肌肉的肌电信号,获取两路肌电信号的样本数据,使用一种改进小波阈值降噪方法进行预处理。计算两路肌电信号的小波相干系数。将所求得的小波相干系数作为特征向量输入支持向量机进行分类识别,成功识别了不同的日常行为,具有较高的识别率。本发明将小波相干性的肌电特征与支持向量机结合的方法,对人体日常行为识别具有较高的识别率和可靠性。实验结果表明,本发明方法对上楼、下楼、站立、行走、跑步、跌倒的平均灵敏度达96.17,平均特异度达92.29,高于一般传统的方法。

Patent Agency Ranking